
A Safe, Efficient

Object Database Interface

Using Batched Futures

by

Phillip Lee Bogle

July 1994

 Massachusetts Institute of Technology 1994

This work was supported in part by the Advanced Research Projects
Agency of the Department of Defense, monitored by the Office of Naval
Research under contract N00014-91-J-4136, and in part by the National
Science Foundation under grant CCR-8822158.

Massachusetts Institute of Technology
Laboratory of Computer Science

545 Technology Square
Cambridge, Massachusetts 02139

3

A Safe, Efficient Object Database Interface

Using Batched Futures

by

Phillip Lee Bogle

Abstract

For many systems such as operating systems and databases it is important to
run client code in a separate protection domain so that it cannot interfere
with the correct operation of the system. Clients communicate with the
server by making cross domain calls, but these are expensive, often costing
substantially more than running the call itself. This thesis describes a new
mechanism called batched futures that transparently batches client calls so
that domain crossings happen less often, thus substantially reducing the
cost. This thesis also presents performance results showing the benefits of
the mechanism on various benchmarks. Batched futures are described in a
context in which they are particularly applicable and useful: the client
interface to Thor, a new object-oriented database. A secondary
contribution of this thesis is the description of this safe, language-
independent client interface to Thor.

Thesis Supervisor: Barbara H. Liskov
Title: N.E.C. Professor of Software Science and Engineering

Keywords: futures, batching, protection domains, cross-domain calls,
remote procedure calls, RPC, distributed systems, context switch overhead

5

Acknowledgments

I am indebted to many people for their input and assistance in this thesis.

Barbara Liskov, my thesis supervisor, who directed me in a promising research direction,

made numerous helpful suggestions along the way, and helped me structure my ideas

clearly in the form seen here. I owe her a debt of gratitude not only for supervising this

thesis but also for her lessons in how to conduct and present research. Any errors exist in

spite of her.

My office-mates, Atul Adya and Quinton Zondervan, who were ready at a moment’s

notice to discuss an idea, share their own research with me, or comment on one of the

innumerable drafts of this thesis. They made office 526 an interesting and entertaining

place to be.

To Mark Day, for introducing me to the Programming Methodology group before I came

to MIT and for introducing me to Thor when I joined the group, and to him and all the

other members of the Programming Methodology group for offering invaluable feedback

on the thesis: Andrew Myers, Sanjay Ghemawat, Robert Gruber, Deborah Hwang, Liuba

Shrira, Paul Johnson, and Dorothy Curtis. Thanks also to James O’Toole and Kavita

Baala for their input.

To my parents and my parents-in-law in Seattle and Bangkok, and my extended family

around the world, for their continued guidance and encouragement.

Finally, a special thanks to Manjari Wijenaike, my wife, for the fresh perspectives, support,

and friendship she has always provided.

7

Contents

1. Introduction 13

1.1 Related Work..15

1.2 Roadmap...17

2. Object-Oriented Database Model 19

2.1 OODBs Goals...19

2.2 Compromises of Existing Object-oriented Databases...21

2.3 Achieving Safety and Its Costs..22

3. Thor Client Interface 23

3.1 Objects and Operations..23

3.1.1 Iterators ...24

3.1.2 Exceptions...25

3.2 Types..25

3.2.1 The Subtype Hierarchy...27

3.2.2 Typechecking...28

3.3 Transactions..28

3.4 Garbage Collection..29

3.5 Discussion: Transmitting the Representations of Arbitrary Types..29

3.6 High-level Architecture...30

3.7 Safety issues..32

4. Veneers 35

4.1 Database Commands...35

4.2 Stub Types..37

4.2.1 Stub Type Interface..37

4.2.2 Stub Type Implementation...44

4.2.3 Storage Management ...47

8

4.2.4 Veneer Support For Iterators ..49

4.3 Implementing New Veneers..51

4.3.1 Stub Generators ...51

4.3.2 Different Type Systems..53

4.3.3 Coordinating Client and Database Garbage Collection ...55

4.4 Language Independence Issues..56

5. Batched Futures 59

5.1 Introduction to Futures ..59

5.2 Example..60

5.3 Implementation ...62

5.3.1 Representing Futures..62

5.3.2 Mapping Futures to Objects..62

5.3.3 Limiting the Size of the Future Mapping..65

5.3.4 Stub Object Storage Management...66

5.3.5 Shared Memory Optimizations...67

5.4 Other Benefits of Batching Calls ...68

5.5 Exceptions..69

6. Experimental Results 71

6.1 Performance model...71

6.2 Measured Performance: Best Case...72

6.3 A Less Favorable Case..76

7. Extensions 79

7.1 Futures for Basic Values..79

7.1.1 Example...82

7.2 Batched Control Structures..83

7.2.1 The Meaning of Batched Control Structures...84

7.2.2 Restrictions on Batched Control Structures ..85

7.2.3 Evaluating Batched Control Structures...87

9

7.2.4 Additional Benefits of Batching Control Structures ..89

7.2.5 Comments..90

8. Conclusions and Future Work 91

11

Table of Figures

Figure 3-1: Example Type Interface 26
Figure 3-2: Subtyping 27
Figure 3-3: Thor Architecture 31
Figure 4-1: Database Commands 36
Figure 4-2: Type Interface in Theta 38
Figure 4-3: Stub Type Interface in C++ 38
Figure 4-4: Example Client Routine 39
Figure 4-5: Basic Exception Handling 43
Figure 4-6: Stub object Exception Handling 44
Figure 4-7: Object Representation 45
Figure 4-8: Cross-Domain Method Calls 46
Figure 4-9: Example Stub Function 46
Figure 4-10: Smart Pointer Implementation 49
Figure 4-11: C++ Stub Function Skeleton 52
Figure 4-12: Lisp Stub Function Skeleton 53
Figure 5-1: Batching interrelated calls using futures 61
Figure 5-2: Representing Futures 62
Figure 5-3: Returning Futures 63
Figure 5-4: Mapping Futures to Objects 64
Figure 5-5: Remapping Futures 66
Figure 6-1: Values of tc and td for some systems 73
Figure 6-2: Best Case Performance— Simple IPC 75
Figure 6-3: Best Case Performance— Thor, Local 75
Figure 6-4: Best Case Performance— Thor, Remote 75
Figure 6-5: OO7 Traversal Performance 77
Figure 7-1: Client Control Structures 83
Figure 7-2: Batched Iterator and Conditional Control Structures 84
Figure 7-3: Batched Calls and Control Structures 85
Figure 7-4: The Assign-Once Restriction 86
Figure 7-5: Batched Depth First Traversal 87

13

Chapter 1.

Introduction

An important problem in the design of client-server systems is the tension that exists

between safety, performance, and clean interface design. Many systems would ideally be

structured as distinct subsystems, each running in its own protection domain and

communicating with other subsystems via fine-grained calls. Protection domains are

desirable because they prevent an ill-behaved client from corrupting data structures,

reading private information, or otherwise interfering with the correct operation of servers,

increasing the modularity, security, and debuggability of the system.

Unfortunately, there is a significant performance penalty associated with crossing

protection domain boundaries (for example, the context switch overhead in Unix). Even

the best cross-domain call implementations are many tens of times slower than direct calls

[Bershad 90]. Crossing a protection boundary on every call is prohibitively expensive for

lightweight operations, because much more time is spent crossing protection domains than

getting work done. The overhead becomes another order of magnitude worse when the

communicating subsystems run on different machines and communicate over a network.

The problem is not likely to disappear with advances in software and hardware

technology: context-dependent optimizations in hardware such as superscalar processors,

pipelining, and caching make domain crossings all the more expensive, while increasingly

complex software systems make them all the more important.

This thesis presents a general mechanism, called batched futures, for reducing the cost of

cross-domain calls. The basic idea is that certain calls are not performed at the point the

client requests them, but are instead deferred until the client actually needs the value of a

result. By that time a number of deferred calls have accumulated and are sent all at once,

in a “batch.” In this way we can turn N domain crossings into one, and user code runs

faster as a result. Our mechanism makes the batching essentially transparent to client

14

applications and allows later calls to make use of the results of earlier calls. In addition, it

can be used when the client and server run on the same machine or different machines.

For batched futures to be useful, the client and server should be separated by a boundary

that it is expensive (but possible) to cross, and that crossing should have a significant cost

component independent of the amount of data being transferred between the domains.

For example, in Unix, processes can communicate with other processes using IPC

(interprocess communication) mechanisms such as sockets or shared memory, but must

pay the penalty of a context switch on each communication. Other systems might use

even heavier-weight protection boundaries, such as running the client program on a

separate machine and communicating with it over a network.

Batched futures are particularly useful for interacting with object-oriented database

systems (OODBS). In principle, an OODB combines the rich object model of a modern

programming language with the language independence, persistence, and secure sharing of

a traditional database. In practice, most OODBS fail to achieve one or more of these

goals. In the interests of performance, they sacrifice safety— running clients in the same

protection domain as the data and giving them unrestricted access to the representations

of objects in the database— and/or language independence, supporting only a single client

language.

Thor is a new database that aims to reconcile the goals of safety and performance. This

thesis presents a client interface design for Thor that allows safe sharing of database

objects by applications written in virtually any client language. Because this design places

clients in a separate protection domain from the database, each interaction between the

client and the database incurs the overhead of a cross-domain call. We then show how

batched futures can be used to help reduce the overhead of cross-domain calls, increasing

performance without sacrificing safety.

1.1 Related Work
A great deal of work has been done on reducing the costs of transferring control between

protection domains, for example, Bershad’s work on lightweight remote procedure calls

15

[Bershad 90]. Such work has made significant progress, but despite intensive effort has

not succeeded in eliminating domain-crossing overhead. Our approach is complementary

to these approaches in the sense that it amortizes the remaining overhead by reducing the

number of crossings.

Several past systems have taken advantage of batching to reduce domain-crossing

overhead, for example Mercury call streams [Liskov 88b] and the X window system

[Getty 90]. However, past systems have failed to deal adequately with the question of

what to return to the client in place of the actual return value. X opts for the rather

draconian solution of disallowing return values for batched calls. Under Mercury, the

client receives a promise for the eventual result of the call, which at a later point it can

explicitly claim to obtain the actual value. However, a promise is an inferior substitute for

the actual result, because it cannot be used an argument to another remote call. Our

approach improves on these past approaches both in its transparency to users and in its

ability to batch interrelated calls.

Futures were introduced in the parallel programming language Multilisp [Halstead 85].

However, they were used there to mask caller-callee parallelism on a multiprocessor

system, rather than to batch calls in a serial system, as our scheme does. Because parallel

futures introduce unrestricted concurrency, they can change the semantics of the client

program, which is never the case with batched futures. Used unwisely, they can also

increase the running time of a program, because of the overhead of the parallel fork and

the additional tag checks required to check for futures, whereas batched futures never

increase client running time. In a parallel system, a future might occur anywhere a basic

value is expected, so the tag checks for futures “infect” the entire system. In our system,

it is always the case that a future is evaluated by the time it is needed, eliminating the need

for tag checks throughout the system.

Barrera has independently developed a scheme that seems closely related to ours in

[Barrera 93]. However, the two page workshop paper describing his scheme fails to deal

with a number of important issues including:

16

• space efficiency- the design seems to require that the system maintain an arbitrarily

large mapping for an indefinite period of time.

• time efficiency- the design has an O(n2) copying overhead for a batch of n calls

• type safety- the paper describes the results of batched calls as promises, which are a

distinct type from normal values, but says that they can be passed as arguments as if

they were normal values, which implies they have the same type as normal values.

This apparent contradiction is not resolved.

• performance results- the results given are too sketchy to be useful; the paper gives no

indication of the degree of batching required to obtain the claimed results.

This thesis attempts to provide answers to each of these questions.

Software-based fault isolation [Wahbe 93] is a scheme for inserting software bounds

checks into untrusted client code to ensure that it does not access data outside of its own

region of memory, thereby allowing it to run safely in the same protection domain as the

database. Unlike our scheme, software-based fault isolation adds overheads to the client

code even when the code is not communicating with the database; however, these

overheads are small and software-based fault isolation is likely to outperform our scheme

for clients that interact frequently with a server. The major disadvantage of the scheme

relative to ours is that it requires modifications to the compiler or a sophisticated binary

patcher, which the authors admit is difficult if not impossible to write for arbitrary,

unannotated binaries. (The authors do suggest that by adding additional information to

the object file format, the binary patching problem becomes feasible. However, this just

transfers the necessary modifications from the compiler on to the linker, which is not

necessarily any less of a difficulty if all that is available is the linked binary.) Software-

based fault isolation is therefore more difficult to implement and, in a practical sense, less

portable than our scheme, which can easily be implemented for essential any programming

language without compiler modifications. Also, software-based fault isolation is obviously

not applicable if the two domains are actually running on separate machines, whereas our

17

scheme is. In fact, our scheme yields the greatest benefits in just that situation, in which

the domain crossing overhead is largest.

1.2 Roadmap
The remainder of this thesis is organized as follows.

• Chapter 2: Motivates the need for batched futures by describing object-oriented

databases and the safety compromises that past databases have made to get good

performance.

• Chapter 3: Describes the client view of the Thor database. Clients see Thor as a

universe of persistent, encapsulated, strongly-typed objects. Atomic transactions

ensure database integrity in spite of system failures and concurrent access. Garbage

collection automatically deallocates objects that are no longer in use.

• Chapter 4: Describes a client interface design, called a veneer, that provides the full

power of Thor to an arbitrary client language without compromising safety. The

essential features of the model are a separate protection domain for clients and a

representation for object references that conceals the actual object representation.

• Chapter 5: Explains the main contribution of this thesis, batched futures, and their

implementation in the context of Thor. Batched futures require simple generalizations

of the client object representation and data structures already maintained by the

database.

• Chapter 6: Presents a performance model and the results of performance experiments

from three systems: (1) a lightweight IPC system, (2) Thor in its standard

configuration, and (3) Thor with the client running remotely. We find that batched

futures yield performance increases up to 10 times if high batching factors can be

obtained. Even under worst-case conditions in which only low batching factors can be

achieved, we still measure performance increases of over 1.7 times.

• Chapter 7: Adds several extensions to the basic batched futures model that increase

the amount of batching that is possible. One extension allows futures to be used for

18

calls that return basic values as well as those that return Thor objects. Another allows

simple control structures to be batched along with calls.

• Chapter 8: Gives our conclusions and discusses several areas for future research.

19

Chapter 2.

Object-Oriented Database Model

In this section, we discuss some of the goals of object-oriented databases, in particular

those of the Thor system, and why the safety provided by protection domains plays an

important role in satisfying those goals

2.1 OODBs Goals
Object-oriented databases (OODBS) are intended to provide a level of storage more

closely matched to the needs and semantics of modern applications than that provided by

traditional filesystems and relational databases. In principle, they incorporate a number of

features from object-oriented programming languages, while retaining the best features of

traditional databases.

One important advantage over traditional databases is the ability to store object

operations, implemented in a powerful programming language, as well as the objects

themselves. This allows objects to be encapsulated, that is, accessed only through a

predefined set of operations (methods) rather than by directly modifying their

representation. For example, an object-oriented database could support a balanced tree

type, with operations that maintain the invariant that the tree object is balanced.

Encapsulation allows the database implementer to ensure that the database correctly

captures the objects’ semantics, and that clients do not accidentally overwrite objects by

directly modifying their representations. As a result, objects entrusted to the database are

less likely to be corrupted by the client applications that share them.

Another advantage is that an OODB directly supports pointers between objects, allowing

it to capture the interrelationships in a network of objects. Relational databases, in

contrast, force applications to “flatten” the network into a linear collection of records, and

simulate pointers using objects IDs and associative lookups. Such translations are harmful

20

to performance, inconvenient, and error-prone: the translation into the database might not

be correct, or when the information is accessed it could easily be misinterpreted. In

addition, because a relational database cannot tell the difference between an object ID and,

say, a part count, it cannot perform useful tasks that depend upon following object

references (for example, garbage collection and prefetching.)

Finally, an OODB supports a hierarchy of types and subtypes. The type hierarchy

describes common behavior among a set of related types, facilitates code reuse, and

simplifies reasoning about code. In contrast, most traditional databases only support a

fixed set of basic field types arranged into records.

At the same time, the ideal OODB maintains the best features of traditional databases. In

particular, the data in an object-oriented database should be safely shareable between

client applications written in many different languages. We want to extend the full benefits

of the database and object-oriented programming to any client language, even specialized

languages with fixed type and data models such as Perl. Furthermore, we want that access

to be safe, even if the client languages themselves are unsafe. Applications written in C++

and Lisp, for example, could both manipulate a shared set of objects, with the guarantee

that neither one could violate encapsulation and corrupt objects.

An OODB also shields clients from many of the complexities of concurrency and system

failure. It achieves these goals by allowing clients to group sets of related operations into

transactions. Transactions are atomic: either all of the operations within that transaction

take effect, or none of them do. They are also serializable: the effect of running a set of

transactions is equivalent to running them in some serial order. In other words, the client

does not need to worry about operations in its transaction being interleaved with those in

another client’s transaction. As long as each transaction leaves the database in a

consistent state, the database will always remain in such a state regardless of crashes or

concurrent access.

An object-oriented database is therefore more than a traditional database plus pointers and

stored operations, because it adds also adds encapsulation, subtyping, automatic garbage

collection, and so forth. Likewise, it is more than an object-oriented programming

21

language plus persistence, because of the safe, language-independent sharing inherited

from its database lineage. This support for richly structured, persistent, and securely

shareable data can allow OODBs to support new classes of distributed applications, a class

that will grow in importance as computers being more ubiquitous, distributed, and

interconnected.

2.2 Compromises of Existing Object-oriented Databases
Unfortunately, most object-oriented databases compromise the OODB ideal by failing to

provide either safety or heterogeneous access in their client interfaces

Safety requires that client applications cannot violate object encapsulation, whether by fair

means or foul, even when written in unsafe client languages such as C++ that allow

unrestricted reads and writes to arbitrary memory locations. Many systems, especially

commercial systems such as Gemstone [Butterworth 91] and O2 [O Deux 91], sacrifice

safety for performance by allowing clients direct access to object representations.

(Databases expose representations in two ways: linking the client application directly into

the database address space, or exporting copies of object representations into the client

address space. Both options expose the clients to the danger we will describe here,

although linking the client into the database is probably more dangerous.)

Such systems do not provide secure sharing since there is no way to guarantee that objects

are used properly (i.e., only by calling methods) while in user space. Languages such as C

and C++ provide numerous loopholes that violate type safety and encapsulation, including

pointer arithmetic, unrestricted typecasts, explicit deletion, untagged unions, etc.1 When

the object is returned to the database, its representation may have been replaced with

garbage; the best the system can do is check that what comes back has the correct

structure. (Surprisingly, despite the dangers, application programmers are willing to trust

1 There are other, more subtle flaws in the C++ type system. Even without using explicit mechanisms
such as typecasts, the application programmer can write code that is not typesafe. For example, C++ falls
into a well-known pitfall by declaring that S⊆T implies that S[]⊆T[], where ⊆ represents the subtype
relationship and S[] represents an array of S. This allows run-time type errors. For example, an array of
apples could be passed as an array of fruit, since an apple is a fruit. But this allows an orange to be added
to the array of apples, clearly a violation of type safety!

22

vital scientific and financial information to databases that make such compromises.

Perhaps this is because they avoid sharing the database with other client applications, and

believe that they would never write a badly behaved application.)

In addition, many object-oriented databases support only a single client language, usually a

popular but unsafe language such as C++ (thereby forcing the application programmer to

use an unsafe language), and therefore do not support heterogeneous access. Such

databases (e.g., ObjectStore [Lamb 91]) sacrifice a key benefit of filesystems and

databases: providing a means of exchange and communication between applications

written in different languages. Regardless of the merits of any particular language, it is

unrealistic to expect application programmers to restrict themselves to that language,

because they may rely on the specialized features, libraries, or hardware support of some

of other language.

2.3 Achieving Safety and Its Costs
These problems can be solved if client applications are isolated in their own protection

domains. Protection domains improve safety because they can prevent client applications

from violating object encapsulation. They also improve client language independence,

because programs in some client languages do not easily co-exist with other programs in

the same protection domain. For example, Lisp implementations typically assume they

have their address space all to themselves.

This approach requires, however, that each time the application invokes an operation on

an object in the database, a cross-domain call must be made. A significant fraction of

database calls perform very little work (for example, looking up the value of an instance

variable), so that the time to execute lightweight calls is dominated by the domain-crossing

overhead. This makes the database prohibitively expensive to use for lightweight objects

and operations.

Object-oriented databases are thus a prime example of the tension between safety and

performance alluded to in the introduction. This thesis is concerned with techniques that it

make it practical to keep domains separate by providing acceptable performance for

lightweight cross-domain calls.

23

Chapter 3.

Thor Client Interface

Thor [11] is a new object-oriented database that aims to achieve the OODB goals

mentioned in the previous chapter: safety, heterogeneity, and good performance, even for

lightweight objects. Client applications written in any language can entrust persistent data

to Thor, with the assurance that other applications or incorrectly implemented types that

they do not use will not be able to corrupt that data. Our work was done in the context of

Thor, so we will need to introduce the client interface supported by Thor. The remainder

of this chapter is a complete description of the interface that Thor provides to clients.

3.1 Objects and Operations
From the client’s standpoint, Thor provides a universe of encapsulated objects that can be

referenced by client variables. Each object supports a set of operations. The client

interacts with objects in the database by invoking operations on them. An operation can

transform the internal state of its arguments and/or return one or more results to the client.

(For example, the deposit operation on a bank account object might increase the amount

of money in the account and return the new account balance to the caller.) Each

operation is described by an interface that specifies the name of the operation, the

arguments that it takes, the result that it returns, and other aspects of the operations

behavior..

There are two kinds of results:

• Handles are opaque references to shared objects in the database. The object reference

can be passed as an argument to other operations, but the object’s representation

cannot be accessed.

24

• Values are returned for the built-in simple types: integers, characters, reals, and

booleans. Each of these has a defined external representation and corresponds to a

built-in client language type.

Similarly, the arguments to operations are either handles, obtained as the result of previous

calls, or values. The main point to realize is that by the client is not given the values for

objects, except for a small, fixed class of objects. (Thor could support more complicated

sorts of values (e.g., structures), but the issues raised in that case are orthogonal to this

thesis.)

Handles are short-lived pointers that are valid only for the duration of a particular client

session. They are actually represented by integer indices into a volatile array H in the

Frontend that maps the handles to actual objects. Thor attempts to keep the range of

handles as small as possible by allocating them sequentially.

When the client first begins a session, it is provided with a handle to the root of the

database, which is a directory object that allows the client to look up the handles of other

“well-known” objects via pathnames, similar to those supported by a file system. In

general, however, the client finds objects by navigation— the client calls an operation that

returns a reference to some other object, which in turn may be used to reach other objects.

(Thor will also support queries, a specialized language for selecting some subset of objects

based on the results of an operation applied to each object in a larger set [Hwang 94].

However, we do not discuss queries in this thesis.) Typically an application will do many

stages of navigation before reaching an object where the values are of interest.

3.1.1 Iterators
In addition to procedures, Thor supports iterators. Iterators, introduced in the

programming language CLU [Liskov 81], allow a Thor programmer to define new control

structures specialized for a particular type of object. Rather than returning a single value,

an iterator yields multiple values to the caller, which uses a special for construct to iterate

over the yielded values one at a time. Each time the iterator yields a value, control

transfers back to the caller, but the state and control flow of the iterator are maintained, so

25

that the iterator picks up where it left off to yield the value for the next iteration.

(Essentially, the caller and iterator function as co-routines.)

For example, the following Theta code uses the nodes iterator to iterate over the nodes in

a graph and mark each one.

for n: node in graph.nodes() do
n.mark()

end

The code to visit all of the nodes in the graph may be complex and representation

dependent; for example, it could perform a recursive a depth first search, a breadth first

search using a queue, and so forth. But the iterator mechanism hides all of these details

from the user of the type, so that even the most complex traversal mechanism appears to

the client as a simple for loop.

3.1.2 Exceptions
In the normal case, Thor operations terminate by returning a value. However, Thor

operations can also terminate by signaling an exception [Liskov 81, Goodenough 75],

indicating that a condition has occurred that prevents the normal return value from being

computed. An exception consist of a name and zero or more values that give additional

information about the cause of the exception. For example, the array type might signal a

bounds exception if the caller attempts to access a slot beyond the end of an array.

Each operation interface includes an explicit declaration of exceptions it might signal. In

addition to the exceptions explicitly listed, any operation can signal the failure exception

because of, for example, incorrect argument types provided by the client, concurrency

control notifications that the current transaction will abort, etc.

3.2 Types
Thor programmers group objects in the database into types on the basis of behavior. Two

objects of the same type share the same operation interface and semantics, even if their

representations and operation implementations are entirely different. A type consists of a

set of operation signatures, each of which includes the following:

26

• the operation name

• the number and types of arguments expected

• an (informal) description of the operation’s semantics

• the type of the return value.

Thor types are specified and implemented in the Theta programming language [Day 94],

which was created in response to the shortcomings of existing languages with regard to

safety and expressiveness. Client programmers can dynamically add new types and type

implementations to Thor, but they must be written in Theta. The type interface describes

the operations supported by the type but places no constraints on the possible

implementations. Thor stores the interfaces for types in the database in a parsed form that

is easy for applications (for example, an interactive browser) to read and interpret.

As an example, Figure 3-1 presents the interface for item type, which is used in Ical, a

distributed appointment calendar written by Sanjay Ghemawat. An item in the calendar

recurs over a set of days (represented by the dateset type), and can be highlighted in

various styles.

% Calendar items
item = type
 % An item can be hilited in various ways.
 hilite_mode = oneof [always, expire, never, holiday: null]

 text () returns (string)
 set_text (t: string)

 dates () returns (dateset)
 set_dates (s: dateset)

 early_warning () returns (int)
 set_early_warning (days: int)

 hilite () returns (hilite_mode)
 set_hilite (mode: hilite_mode)

 equal (i: item) returns (bool)
end item

Figure 3-1: Example Type Interface

27

3.2.1 The Subtype Hierarchy
A type system in which different types are entirely unrelated is too restrictive, because it

fails to capture common behavior among types that are related but not identical. Thor

therefore includes subtyping: a type S is a subtype of a type T if it supports the same2

operations as T, plus possibly some additional operations. For purposes of typechecking,

an object belonging to a subtype of a type T can be used as an argument anywhere an

object of type T is expected.

For example, Figure 3-2 presents the appointment type, a subtype of the item type

presented earlier. An appointment is a kind of item that supports the additional operations

of getting and setting a specific time range for the appointment and maintaining a set of

alarm times in advance of the actual appointment. An appointment can be passed to any

2 The signatures of the operations in the subtype S do not have to be exactly identical to those in T, but
rather must conform to them according to the standard contra/covariance rules [Schaffer 85, Black 87,
Cardelli 88]. For an operation in S to behave like the corresponding operation in T, it must be able to
handle at least the same set of argument types, and must return a subset of the return types that the
original operation would return. More formally, an operation foo(s1, s2, ..., sn) returns (rs) in S conforms
to an operation foo(t1, t2, ..., tn) returns (rt) in T if, for each argument position i, si is a supertype of ti and
the return type rs is a subtype of rt.

% Appointments are items that occupy a specified time range.
% They can also have associated times at which alarms can go off.
appointment = type item
 % ... all of the item operations are retained, plus the following

 % Appointment start (in minutes from midnight)
 start () returns (int)
 set_start (t: int)

 % Appointment length (in minutes)
 length () returns (int)
 set_length (l: int)

 % Optional alarm times (in minutes before beginning of appt)
 alarms () returns (sequence[int]) signals (no_special_alarms)
 set_alarms (list: sequence[int])

 % Specialized "copy"
 copy () returns (appointment)

 end appointment

Figure 3-2: Subtyping

28

function expecting an item.

3.2.2 Typechecking
As well as being useful for classifying and documenting object behavior for client

programmers, types increase the safety of the system. Type information allows Thor to

ensure that the client does not attempt to perform an operation on an object for which it

was not intended (for example, hammering a screw). Without this information, clients

might be able to corrupt objects in the database by passing them to inappropriate

operations.

For client languages with a sufficiently rich type system, type errors can be detected at the

time the client program is compiled. However, many languages allow an object of one

type to be incorrectly forced to masquerade as another (incompatible) type, fooling the

compile-time typechecker. Therefore, Thor typechecks client calls from any such

language at runtime.

When the database receives a call, it verifies that the handles used are legitimate, that the

object upon which the operation was invoked does in fact support the requested

operation, and that the correct number and types of arguments were given. If the check

fails, Thor does not perform the call. This ensures that operations always receive

arguments of the expected types. If a client overwrites the storage used for handles, the

worst it can do is make a valid call on an unexpected object, which must support an

operation with the correct name and signature.

3.3 Transactions
Each operation call occurs as a part of an atomic transaction. The client commits the

transaction with an explicit call, which implicitly begins a new transaction. Under the

current system, there is only one active transaction at any given time; there are no nested

or disconnected transactions. When the client attempts to commit the transaction, the

system checks to ensure that the operations in the transaction would not be interleaved

with those in some other transaction. If they would be interleaved, the transaction is

29

aborted, and the client must be prepared to redo the operations in the transaction. (See

[Adya 94] for a more complete description of how transactions are implemented in Thor.)

3.4 Garbage Collection
To ensure safety, Thor performs garbage collection on the objects in the Thor universe.

(If clients could explicitly delete objects, they might cause damage by deleting objects

needed by other clients.) Handles are roots of the garbage collection: as long as the client

references an object, Thor will not dispose of it. There is also a persistent root: all objects

accessible from the persistent root are automatically persistent and are garbage-collected

after they become unreachable. Both volatile and persistent objects are stored inside Thor;

the only distinction between the two is reachability from the persistent root.

The fact that handles are returned to the clients is important with respect to garbage

collection. If we returned permanent pointers to objects to the client we would not be

able to garbage collect objects whose only reference was the pointer given to the client,

even after the client session ended. The client could legitimately save a permanent pointer

to a file, for example, and use it in a later session. Handles, in contrast, are only defined to

be valid for the current session.

Because handles are roots for garbage collection, it is desirable that the database is

notified when they aren’t used anymore, even if the client session continues.

3.5 Discussion: Transmitting the Representations of Arbitrary Types
Our system uses handles to represent all database objects. Many other systems export the

representation of database objects into the client address space, so that clients can access

the objects without the expense of a cross-domain call. There are compelling reasons,

however, why we do not allow this in Thor.

Most importantly, although it is possible to convert the representation of a Thor object

into a corresponding client representation, there is no reasonable way to convert the

object’s methods, written in Theta, into methods in the native client language. Therefore

the client program is forced to deal with the object representation directly. Without

methods for interpreting them, the raw bits of the representation may be meaningless.

30

Also, a single type can have multiple implementations, each with a different representation.

The client code will break when it receives an unexpected representation. For languages

with very simple data models, such as Perl, even mirroring the representation may be a

challenge.

Second, only immutable types can be transmitted in this way. If the client directly

modifies the object representation, the database has no way of verifying that the changes

maintain the representation invariant, so it cannot safely incorporate any changes back into

the database. Even if the client were prevented from modifying a mutable object, it would

not be possible for Thor to validate at commit time that all of the objects read by the

transaction were up-to-date, because the object was not accessed using the standard

method interface.

Finally, transmitting complex object representations would complicate the veneer and the

database significantly (see [Birrel 94] for a description of a system with this ability.)

Objects can contain references to other objects as well as data; the code to encode and

decode the resulting object graphs can be time-consuming and a potential waste of

bandwidth if the client is only interested in a small part of the data transmitted.

There are a few cases where we might relax our restrictions on transmitting

representations. Sequences are immutable, ordered collections of objects. Because they

are immutable and have semantics similar to arrays in most programming languages, a

sequence of objects can safely and easily exported be into the client address space as an

(immutable) array. (The database cannot prevent the client from modifying the array, but

changes to the client array will under no circumstances be incorporated back into the

database sequence, so it is effectively immutable.)

3.6 High-level Architecture
The objects of the Thor system are implemented in the Theta programming language [Day

94] and stored persistently on a set of distributed servers, possibly distinct from the client

machines. Because there are multiple servers, accessing objects on the servers often

involves network delay. To prevent network delays on every object access, a process

31

known as the Frontend caches objects and executes operations at the client node on behalf

of the client. However, because Thor does not fully trust client applications, the objects

reside in a different address space from the client program. (In Unix, the operating system

on which Thor is implemented, protection domains, address spaces, and processes are all

equivalent, so the client runs in its own process.)

The part of the system that allows the client to interact with Thor across the process

boundary is known as the veneer, which is explained in detail in the next chapter. The

corresponding part of the Frontend that receives requests from the veneer and invokes the

appropriate operations in the database is known as the dispatcher. The dispatcher

supports two interfaces: a textual interface, suitable for use by humans and veneers written

in specialized text-processing languages such as Perl, and a binary interface, which

provides higher performance and more direct encodings.

xx

x

Network

ServersFE

Client Veneer Thor

H

x→→id()

Figure 3-3: Thor Architecture

In Figure 3-3, the Frontend is caching a subset of the objects stored on the servers

(including the object referenced by the client variable x), and invoking the id operation on

x on behalf of the client. The arrows in the diagram represent context switches to and

from the database to perform the cross-domain call for the id operation. x is represented

in the client address space as a handle, which is mapped by the handle table H in the FE to

an actual object. When the client commits a transaction, any modifications to x and other

objects cached at the Frontend are installed in the server once they have passed the

concurrency control checks.

32

Batched futures are concerned with reducing the domain crossing overhead between the

Frontend and the Veneer.

3.7 Safety issues
The Thor client interface ensures that the client cannot interfere with the correct operation

of the database, even if the client language is unsafe or the veneer is not implemented

correctly. (It is important that the database need not trust the veneer, since the veneer is

linked into the client protection domain and could have its data structures corrupted by the

client.) This claim of safety deserves close scrutiny. If it is false, the expense of placing

the client in its own protection domain is wasted.

First, note that the client cannot directly violate encapsulation. The representations for the

database objects are in a separate protection domain, so by definition the client cannot

access them, assuming the protection domains supported by the operating system and

hardware are worthy of the name. For the same reason, the client cannot jump to illegal

points inside the database code or otherwise interrupt the database’s normal flow of

control. (Some microcomputer operating systems, such as Microsoft Windows, do not

provide sufficiently strong protection domains. In that case, safety can be achieved by

running the Frontend on a different machine from the client. In fact, if security were of

paramount concern, we would do the same under Unix, since a user with root privileges

or physical access to the machine can gain direct access to physical memory.)

What the client can modify are the handles stored in its own address space. However, no

harm can come to the system as a result, because the system typechecks calls at runtime

and only defines handles for objects that the client is allowed to access. If the client

overwrites a handle with a value outside the legal range, or with a handle for an object of

an incompatible type, the database will detect this fact when the client tries to use the

handle in a call and abort the call with an error.

If the client overwrites a handle with a handle for another object of the same type, or some

other type that happens to have the same interfaces for all of the operations the client uses,

the database will not be able to detect the switch. However, all the client has succeeded in

doing is redirecting a reference to another object that the client is allowed to access, which

33

in no way compromises the safety of the system. Notice the safety depends upon the fact

that a handle is not assigned to an object unless the client has gained legitimate access to

that object as the result of a method call. If every object had a preassigned handle, the

client might be able to guess the handle of an object it was not allowed to access and forge

a stub object with that handle.

35

Chapter 4.

Veneers

To use Thor from a particular language, that language needs a small extension called a

veneer. The goal of the veneer is to map the features of the Thor client interface as

naturally as possible onto native constructs in the client language. This chapter explains

what the veneer does and how it is implemented. It assumes a simple model in which

operations are actually performed at the point of the call and the client waits until they are

complete; this assumption is relaxed in the next chapter.

The veneer consists of two major components:

• a small, fixed set of database commands for interacting with the database as a whole
(e.g. starting a session, committing a transaction, etc.).

• a set of client types mirroring the types inside Thor. The client types implement stub

objects that refer to objects in the database and stub functions that invoke the

corresponding database operations. The net effect is to make Thor objects appear

exactly like client objects.

For concreteness, we show first how these two components are implemented in the C++

veneer. We then consider the steps necessary to implement a veneer for a new client

language, and show how the design changes depending on properties of the client

language such as the richness of the type system and the availability of garbage collection.

The implementation details of the veneer are primarily of interest to veneer implementers,

and may be skipped without loss of continuity by those wishing only to understand

batched futures.

4.1 Database Commands
The database commands allow the client application to make initial contact with Thor and

to perform higher-level operations such as committing transactions. Only a small number

36

of general database commands are needed because most of Thor’s functionality resides in

individual objects and their associated operations, as discussed in the next section.

Figure 4-1 presents the C++ interface for the database operations; in every other client

language they will appear essentially the same, modulo differences in syntax. The

commands begin_session and lookup_wellknown allow a client to start a Thor session

and obtain references to “well-known” objects by name. After invoking a series of object

operations, a client can commit or abandon the work of the transaction by calling

commit_trans or abort_trans, both of which implicitly begin a new transaction. Finally,

end_session terminates a client session, after which point the client object references

become invalid and the client can invoke no further operations.

/*
 Database Commands

 These functions are called directly by the client to initiate communication
 with the database, lookup objects, and define transactions.
*/

bool begin_session (char *fe_spec);
// requires -- fe_spec is a the name of a host, or NULL
// effects -- attempts to open a connection with the specified frontend,
// or with a newly create slave FE if fe_spec is NULL. Returns
// TRUE iff the connection attempt succeeded

th_any* lookup_wellknown (char *wellknown);
// effects -- returns the stub object named with the name wellknown, or
// NULL if there is no such object.

bool commit_trans ();
// effects-- Commits the current transactions and begins a new one.
// Returns true if the commit succeeded.

void abort_trans ();
// effects-- Aborts the current transaction.

bool end_session ();
// effects-- Terminates the session with the database.

Figure 4-1: Database Commands

The implementation of the database commands is trivial, as seen in the example in Figure

4-2, because the database does all of the real work. The database commands simply send

a cross-domain message to the database consisting of a command code and an encoding of

37

the arguments (if any), and read and decode the result sent back from the database,

returning it to the client.

Figure 4-2: Database Command Implementation

4.2 Stub Types
The more significant component of the C++ veneer is a stub type hierarchy mirroring the

Thor type hierarchy. To use a Thor type, the client programmer includes the header file of

the corresponding stub type and links in a library of compiled stub types when compiling

the program. In the subsections that follow, we will first describe the stub types’

interfaces, then their implementation.

4.2.1 Stub Type Interface
The C++ veneer header files declare classes corresponding to each of the Thor type

interfaces. For example, Figure 4-2 presents the Thor interface to the Module type, and

Figure 4-3 presents the corresponding C++ class interface, defined in the header file

th_Module.h. (The Module type is used in the OO7 benchmark [Carey 92] and is intended

to be typical of the sort of object used in computer aided design applications. The

interface supports operations for returning a manual object that describes the module,

finding the number of subassemblies, fetching a subassembly by index number, and getting

the root subcomponent.)

bool commit_trans ()
{

fputc(‘C’, client_out);
transfer_control_to_fe();
return (getc(client_in) == SUCCESS_CODE);

}

38

The C++ interface is essentially a direct translation of the Theta interface into the C++

syntax. Because the interface preserves the subtype relationship declared between Module

and DesignObj, the C++ compiler is able to do compile-time typechecking for stub type

operations. There is one substantial difference: the way that exceptions are handled. This

mapping of exceptions into C++ is explained in full in Section 4.2.1.2. There are also

several cosmetic differences between the two interfaces:

• Thor type names are prefixed by th_ to reduce name clashes with client types

• The implicit pointers in the Theta interface are made explicit, following C++

conventions. (This is also necessary because restrictions in C++ on the way types are

used. If type S declares a variable of type T and vice versa (for example, in an

argument declaration), then it is necessary to use pointers for the declarations, because

C++ must be able to determine the size of any variable at the time a type is declared.)

• The interface includes a free operation for deallocating the storage associated with the

stub object and informing the database the object is no longer referenced by the client

program. (We will discuss storage management in greater detail in Section 4.2.3.)

The interface also includes a private constructor for use by the veneer. It cannot be

called by the client, but is used by the veneer to construct a new th_Module object

given a Thor object handle.

Module = DesignObj type

man () returns (Manual)
numAssemblies () returns (int)
assemblyIndex (i: int) returns (Assembly)

signals (bounds)
designRoot () returns(ComplexAssembly)

end Module

class th_Module : public th_DesignObj
{

public:
th_Manual* man ();
int numAssemblies ();
th_Assembly* assemblyIndex (int i)

// signals(bounds)
 th_ComplexAssembly* designRoot ();

free ();
protected:

th_Module(handle h) : th_DesignObj(h) {}
};

Figure 4-2: Type Interface in Theta Figure 4-3: Stub Type Interface in C++

39

4.2.1.1 Example
Before going into the details of the veneer, we will consider a brief example to show how

the veneer is actually used. The traverse_part client function does a depth-first traversal

of all of a graph of atomic parts in a OO7 database. The th_AtomicPart type is a stub type

define by the veneer, while the IDSet type used to keep track of the parts already visited is

implemented entirely in the client language. The only point we want to emphasize is that

the two types are used identically by the client programmer; the veneer makes the

indirection to the database invisible.

4.2.1.2 Handling Exceptions
Exceptions are officially a part of C++, but many compiler implementations do not support

them. Other popular languages do not support exceptions at all. For these reasons

(among others3) our C++ veneer does not use exceptions directly.

In performing this mapping of exceptions to C++ without using an exception mechanism,

we want to maintain as many of the desirable features of exceptions as possible. In

particular, features we would like to retain are:

3 Another reason is that C++ exceptions are not compatible without futures, whereas the technique to be
described is.

#include “th_AtomicPart.h”
#include “th_Connection.h”
....
int traverse_part (th_AtomicPart *a, IDSet *visited)
{

int id = a→id();
if (visited→contains(id)) return 0; // don't visit same part twice

visited→insert(id); // Add part to list of visited parts
int result = doPart(a, id); // Perform action on part
int num = a→numOutgoing();
for (int i=0; i < num; i++) { // Traverse the subparts

th_Connection *next = a→outgoingIndex(i);
result += traverse(next→to(), visited);
next→free ();

}
a→free();
return result;

}

Figure 4-4: Example Client Routine

40

• The client should not have to check for exceptions after every operation, since this

interrupts the flow of code and makes it hard to read.

• However, exceptions should not go entirely undetected by the client.

• If the client does fail to handle an exception, the veneer should be able to detect this

fact.

In addition, we want the mappings of exceptions into the client language to be as

unobtrusive as possible in terms of its effect on stub function signatures. For example, we

would not want exceptions to require an additional argument for every operation, since

this is inconvenient for the client programmer and reduces the similarity between the

veneer and database type signatures.

Our solution has two major features: an exception history that allows the client to defer

checking for exceptions, and exception propagation, which allows the client to determine

if exceptions occurred for any intermediate calls in string of interrelated calls by checking

only the final result.

The exception history is maintained by the veneer and contains a history of the exception

results of all “recent” calls, where a recent call is a call in the current transaction. If no

exception is signaled by an operation, the veneer returns the normal return value and adds

a null exception value to the history, indicating that no exception has occurred. If, on the

other hand, an exception is signaled, the veneer returns a null value for the result (that is,

an invalid handle for stub objects, 0 for integers, etc.) and adds an exception value to the

history giving the name and associated values for the exception. At a later point, the client

can obtain the exception value associated with a call and, by invoking methods on the

exception value, determine the properties of the exception result.

Before proceeding to a description of how the client obtains exception values, we will first

consider exception propagation, which is possible for operations that return handles but

not for those that return basic values. When an operation that returns a handle signals an

exception, that stub object is tagged as invalid. If the client uses the handle as an

argument to another call, the veneer detects this fact and returns another exception value

41

with the name unhandled_exc and a value consisting of a pointer to the exception value

that the client originally failed to check. Continuing the propagation, if a handle

associated with an unhandled_exc is passed as an argument, another unhandled_exc

exception is returned that points to the original exception value. Thus, if an exception is

signaled anywhere in a string of interrelated calls that return handles, the exception will

propagate all the way to the final call. To determine what exception occurred originally,

the client need only check the final exception value. Exception propagation is not possible

for calls that return basic values because in general the entire range of a basic value is legal

as a return value.

We now return to a discussion of the client calls for obtaining exception values. The

exception history provides several different ways for the client to obtain exception values,

each providing different tradeoffs with respect to the unobtrusiveness and precision of the

exception handling. The last_exc() call returns the exception value for the most recent

call. The exc() method defined on stub objects returns the exception value for the call that

returned the stub object. Finally, the first_exc() call, followed by repeated call to

next_exc(), allows the client to iterate through all of the unhandled, non-null exceptions in

the history. We expand on each of these calls in the paragraphs below.

The last_exc() call supports a style of exception handling in which the client checks for

exceptions immediately after each call. This style of exception handling is inconvenient, in

that it tends to break up the flow of the client program, but is necessary if exceptions are

to be detected immediately. In most cases, the client will need to call last_exc() after

every call that returns a basic value to make sure the result is valid.

The exc() call allows a more convenient way to handle exceptions for calls that return stub

functions. The client can defer checking for exceptions until any later point, because as

long as the client holds onto a stub object, it can retrieve the associated exception value.

Because exceptions propagate for calls that return handles, the client can even avoid

checking for exceptions from most calls. If the client needs to find the precise exception

that set of a chain of exceptions, the client can obtain it by getting the value associated

with the unhandled_exc error.

42

Finally, examining the exception history provides an “optimistic” exception handling

mechanism. If the programmer believes that exceptions are unlikely, they can

optimistically assume that none will be signaled and defer checking for exceptions until

commit time. At commit time, the client program can verify that there are no items in the

unhandled exception history. If there are exceptions in the history, they can abort the

transaction, undoing all of the work in the transaction, and start again, or they can attempt

to unwind its state back to the point of the exception, although this is probably quite

difficult. For this approach to work, the client has to be prepared for possibly meaningless

null values from basic valued calls that signal unchecked exceptions, even if the operation

specifications say that such values are not returned.

The exception history does more than allow the client to handle past exceptions; it also

allows the veneer to determine when the client has failed to handle an exception. Each

non-null exception value in the history has a flag, initially false, indicating whether it has

been checked yet by the client. When the client obtains an exception value using one of

the calls mentioned above, the checked flag is set to true.

At commit time, the veneer verifies that every non-null exception value in the history has

been checked; if not, the veneer refuses to commit the transaction. The intention is that

the client should be aware of any exceptions before deciding that the work of the

transaction should be committed. The client can override this is on a per-transaction basis

by calling exceptions_clear() immediately before committing. Exceptions are

automatically cleared out when the client aborts a transaction and after a transaction

commits successfully.

In practice, clients will probably use a mixture of these exception handling styles,

depending upon the nature of the exception. The exceptions explicitly listed in the type

interfaces will usually need to be checked for immediately (for example, the bounds

exception for an array.) However, many clients will probably defer checking for the

failure exceptions until the end of a loop or even until the end of the transaction. These

exceptions are often not caused directly by the client and will not necessarily reoccur if the

transaction is restarted, so it makes sense for the client to simply abort and try again.

43

4.2.1.3 Exception-Handling Example
Consider a withdraw operation for a bank account that signals two exceptions: overdrawn

and not_possible. Each exception has associated information: an integer for overdrawn,

giving the amount the account is overdrawn, and a string for not_possible, giving an

English explanation for why the caller is going to go penniless.

The Theta interface for withdraw is:

withdraw (dollars: int) signals (overdrawn(int), not_possible(string))

The corresponding C++ stub function interface is:

void withdraw (int dollars); /* signals (overdrawn(int), not_possible(string)) */

Figure 4-5 shows how a C++ application would handle the exceptions signaled by

withdraw, an operation that does not return any values. The exception value supports

methods for each of the exceptions that the corresponding operation might signal; the

methods return true if the exception with that name has been signaled and false otherwise.

In addition, the exception value supports methods for each value associated with an

exception name; for example, overdrawn_int is used in the figure is used to retrieve the

integer value associated with the overdrawn exception. The client program uses these

methods to check for exceptions and retrieve their values.

Figure 4-5: Basic Exception Handling

Similarly, Figure 4-6 shows how the client would check for exceptions from the next

operation on a list, which returns a stub object and signals the bounds exception. The

only real difference between the two cases is that the exception value is obtained by

invoking exc() on the result object; this would work even if other operations had been

invoked in the meantime.

my_account→withdraw(100);
if (last_exc()→overdrawn()) // check for exceptions

cout << “Your account is overdrawn by “ << e→overdrawn_int() << “ dollars”;
else if (last_exc()→not_possible())

cout << “Withdrawal is not possible because: “ << e→not_possible_string();

44

Figure 4-6: Stub object Exception Handling

4.2.2 Stub Type Implementation
The previous subsection showed how the veneer maps the interfaces of Thor types onto

corresponding client interfaces. This subsection is concerned with how the veneer exports

the functionality of Thor objects without compromising their safety or changing their

semantics.

4.2.2.1 Basic Values
Basic values (integer, characters, reals, and booleans) are represented as native client

values, transmitted using a suitable representation to and from the database and decoded

by the veneer. (For example, the num_assembly stub function returns a native C++ int.)

In our system, basic values have the same representation in Thor and in C++, so the

encoding and decoding steps are trivial; the representations can be copied directly to and

from the communications buffers. In other languages, the decoding steps might be more

substantial. In any case the burden of encoding and decoding should fall on the veneer,

not the database. Doing encoding and decoding in the database would require

modifications to the database for each new language, whereas doing them in the veneer

offers opportunities for improving performance because they can be done lazily, as we

shall later see.

4.2.2.2 Object References
Thor objects, in contrast to basic values, are represented by reference, not by translations

of their actual representations. Although the stub type interfaces encourage client

programmers to believe that they are pointing directly to Thor objects, the actual Thor

objects are safely stashed away in a separate address space. What the client is actually

pointing to are stub objects.

l = l→next(); // get the next item in a list
if (l→exc()→bounds()) // check for the bounds exception

....

45

The representation for every stub object is the same: a single, protected field containing

the handle for the corresponding Thor object. (By protected, we mean that the handle

field can be accessed only within the th_any class and its subclasses, not by the client.)

The stub objects thus encapsulate a reference to a Thor object without revealing its actual

representation, even if the client violates encapsulation to access their contents. This

scheme is depicted in Figure 4-7.

DatabaseClient

x #2 f:7
g:3

Variable Stub
Object

Handle
Table

Database
Object

Figure 4-7: Object Representation

There is no legitimate way for the client to access the handle stored inside of the stub

object, make a copy of a stub object, or create a new stub object without invoking a Thor

operation. Although clients may do these things illegally by violating encapsulation, they

can only cause trouble for themselves by doing so (especially with the optimizations

discussed later) and cannot cause damage to the objects in the system.

Stub objects are allocated on the heap when Thor returns a handle as a result of an

operation. To ensure that exactly one stub object is allocated per handle, the veneer keeps

a table VH that maps between handles and stub objects. (VH is analogous to the table H in

the database that maps handles to actual objects.) When the veneer receives a handle from

Thor, it checks the corresponding slot in VH to see if a stub object has already been

allocated, returning a reference to that object if so. If not, the veneer allocates a new stub

object and stores a pointer to it in VH for later use.

4.2.2.3 Stub Functions
A stub function implements a Thor operation by making a cross-domain call to the

database, which performs the actual operation and sends back the result. More

specifically, the stub function marshals the function name and arguments into a message to

the server and transfers control to the database protection domain, as depicted in Figure 4-

8. The database dispatcher receives the interprocess message, looks up the corresponding

46

method and objects, typechecks the call, performs it, and sends the results back to the

client in an interprocess message. Finally, the client stub receives the results and returns it

to the client program.

Client Database

x→→next();

next #2

#3

next()
...
return(self.next)

Figure 4-8: Cross-Domain Method Calls

Thor stub functions are similar to those used in standard RPC [Birrel 83], with two

differences:

• all objects are passed by reference (using handles), not by value, so that the encoding

for objects is much simpler.

• The database performs a method dispatch, not merely a function call. The actual code

that is invoked depends upon the receiver’s type as well as the method name. (Other

RPC systems (for example, [20]) also provide this facility.)

As an example, Figure 4-9 gives the implementation for the concat stub function defined

on mstrs (mutable strings.)

Figure 4-9: Example Stub Function

Stub functions have a simple, fixed structure, with each line in the stub sending some part

of a call to the database dispatcher. The stub function first sends the receiver and method

index using begin_invoke, followed by each of the arguments. do_invoke() transfers

th_mstr* th_mstr::concat (th_string* s)
{

th_mstr* res=0;
begin_invoke(self, 2);
put_handle(s->handle);
if (do_invoke()) {

NEW_TH_OBJ(get_handle(), th_mstr, res);
}
else {

get_exception();
}
end_invoke();
return res;

}

47

control to the database and returns TRUE if the operation succeeded. If do_invoke()

indicates success, the stub creates a new stub object of the appropriate result type,

initialized with the result handle read from the database. If not, the else branch contains a

call to read the exception value. The stub then calls end_invoke() and returns the result

object to the client. (It may seem that end_invoke() is superfluous. Indeed, for normal

invocations, end_invoke() does nothing. However, by changing the behavior of

end_invoke() and get_handle(), the veneer can dynamically switch from mode without

futures to one with futures, and vice versa. Every other stub function follows exactly the

same pattern; as we shall see, this makes stub functions easy to generate automatically

based on their interfaces.

4.2.3 Storage Management
Some client applications can quite happily ignore the issue of deallocating stub objects.

The individual stub objects are compact; as long as the client accesses a reasonable

number of distinct objects the total space taken up by stub objects will not be too large,

and as soon as the client application terminates the database can reclaim the handle table

space and garbage collect the objects whose only references were the handles given to the

client.

However, in general, the veneer needs some of way of knowing when a handle is no

longer needed so that it and the database can reclaim storage associated with the handles.

For example, some applications may access very large numbers of objects (such as

traversals that visit every item in the database), or create many temporary objects that are

only used for a short time.

The current C++ veneer implementation requires that client applications explicitly free

stub objects by calling the free method on them. When the client frees a stub object, the

client must no longer use any other references to it. This is a reasonable requirement,

given the C++ philosophy, but what the client cannot be expected to know is when two

calls happen to have returned the same object. To behave reasonably in this case, the

veneer handle table VH includes a counter for each handle h, incremented whenever a stub

function returns h to the client and decremented each time the client calls free_object on

48

h. Only when the count reaches zero does the veneer reclaim the slot in VH and send a

message to the database saying that h is no longer in use.

4.2.3.1 Smart Pointers
C++ programmers are accustomed to explicitly deallocating dynamically allocated objects,

so our convention of using a free operation will not seem alien to them. However, it is

possible for the veneer to lift this burden from programmers by defining “smart pointers”

that automatically maintain a reference count for each stub object [Stroustrup 87]. Rather

than accepting and returning normal pointers, the veneer operations are redefined to use

smart pointers. When the reference count for a stub object drops to zero, that stub object

is automatically destroyed. Because the client program references stub objects exclusively

through smart pointers, it never needs to worry about freeing them.

Like a normal pointer, a smart pointer supports the * and → dereferencing operators to

return the referenced object. In addition, however, the smart pointer type overloads its

assignment, copy, and destructor operations to update the reference counts of the

associated stub objects. Figure 4-10 defines a smart pointer to a th_any, assuming that

th_any has a reference count field refs initialized to zero.

Smart pointers and other reference counting schemes typically have the problem that they

cannot garbage collect cycles of references. For example, if A points to B and B points to

A, their reference counts will both be at least 1 and they will never be garbage collected.

Fortunately, this situation does not happen with stub objects. Stub objects only “point”

(via handles) to objects in the database, and database objects do not point to stub objects,

therefore a cycle including a stub object is impossible, so every stub object that can safely

be reclaimed will be.

One complication of using smart pointers with subtyping is that is necessary to mirror the

subtyping relationships in a hierarchy of smart pointer types, rather than creating a single

parameterized smart pointer type. Although C++ supports parameterized types, there is

no subtyping relationship between different instances of a parameterized type, so a

parameterized smart pointer class does not allow the Thor subtype relationships to be

49

captured. For example, if S is a subtype of T, then there is no subtyping relationship

between Ptr<S> and Ptr<T>, where Ptr is a smart pointer type. Instead, the smart pointer

implementer must create Ptr_S and Ptr_T smart pointer types, with Ptr_S explicitly

declared to be a subtype of Ptr_T.

Figure 4-10: Smart Pointer Implementation

We implemented smart pointers for our C++ veneer. Unfortunately, our C++ compiler

adhered to an obsolete version of the still evolving C++ standard that allowed extremely

aggressive deletion of the compiler temporaries used to store smart pointers, leading to

the premature destruction of stub objects. At least for now we are using the free

approach instead.

4.2.4 Veneer Support For Iterators
There are two issues associated with supporting iterators in client programs. First, most

client languages do not directly support iterators. In addition, on the database side, it is

expensive to maintain the state associated with the iterator between calls. Implementing

yield directly would require that the database use a separate thread for each iterator called

class smart_ptr {
 public:

th_any *obj;
// Increment and decrement the reference counts of the object

void inc_refs() const {if (obj) ++obj->refs;}
void dec_refs const {if (obj) {if (--obj->refc < 0) delete obj;}

// Unless the pointer is null, increment the refs when a
// smart pointer is created or copied

smart_ptr() : obj(0) {}
smart_ptr(th_any *t) : obj(t) {inc_refs();}
smart_ptr(const smart_ptr& o) : obj(o.obj) {o.inc_refs();}

// If smart pointer b is assigned to a, increment b’s refs and
// decrement a’s

smart_ptr& operator =(const smart_ptr& o) {
o.inc_refs(); dec_refs();
obj = o.obj;
return *this;

}
// Decrement the reference count when a smart ptr is destroyed

~smart_ptr() { dec_refs();}
// Define operators to convert a smart pointer into an actual pointer

operator smart_ptr*() {return obj;}
th_any* operator->() {return obj;}

}

50

by the client; the thread would be awakened when the client requests the next value from

the iterator.

To avoid this complexity, the veneer presents an iterator to a client as an operation that

returns an array that contains as elements all of the values yielded by the iterator. (Note

that this does not change the implementation of iterators inside the database; it’s simply a

way of packaging the iterator construct in a way that can be used from the client

language.)

For example, suppose a CompositePart object had a subparts iterator that yielded its

constituent AtomicParts:

CompositePart = type
subparts() yields (AtomicPart)
...

end CompositePart

In the C++ veneer, the iterator would be mapped to the function:

Array<th_AtomicPart*> subparts_array()

where Array<th_AtomicPart*> is a parameterized array type, instantiated to store

references to th_AtomicParts. If the iterator signals an exception at any point, iteration

stops and the correspond slot in the array is set to a null value; the exception value can be

determined by calling last_exc.

To iterate through the AtomicParts array returned by subparts, a C++ client programmer

could write:

Bundling the results of an iterator as an array fails to provide one important feature of

iterators: early termination. The client has no way of stopping the iterator before it has

generated all of its values. This can be a problem if the iterator generates a large number

Array<th_AtomicPart*> ap = cp→subparts_array()
for(int i=0; i < ap→size(); i++) {

th_AtomicPart* p = ap[i];
...

}

51

of values that the client is not interested in, or the iterator has side effects and must not be

allowed to run longer than the desired number of times. Also, some iterators generate an

unbounded number of values, for example an iterator that generates all of the prime

numbers.

The problem can be partially solved by allowing the client to specify how many times the

iterator is allowed to run in advance. However, this approach is of no use if the number of

iterations cannot be determined in advance. For example, with the prime number iterator

mentioned earlier, the caller could find the 10,000th prime, but not the largest prime less

than 10,000. In the Batched Control Structures section (Section 7.2), we describe a

scheme that does allow early termination of iterators, and that provides (with some

restrictions) the additional benefit of allowing the entire body of the foreach loop to run

inside the database without domain crossing or typechecking overheads.

4.3 Implementing New Veneers
We will now consider the steps required to implement a veneer for a new language. Much

of a new veneer can be copied from an existing veneer. There are only a handful of

database commands, and it is trivial to reimplement them by hand, so we won’t discuss

them further. This leaves the stub types: as we shall see, implementing the stub types is

mostly a matter of tweaking an existing stub generator to output stubs following the

syntax of the new language. However, we also consider how the veneer design changes in

response to some significant differences between client languages, such as varying type

systems and garbage collection.

4.3.1 Stub Generators
In principle, the veneer implementer might implement all of the stub type interfaces and

implementations by hand, and in fact this has been done for small subsets of Thor. For the

complete Thor type hierarchy, however, this is too much work, especially since the Thor

type hierarchy is constantly growing as new types are added. (There are currently several

dozen types and hundreds of methods.) Therefore, the veneer implementer instead writes

a stub generator, which automatically generates the stub type interfaces and

52

implementations given the interfaces to the Thor types. This is essentially similar to the

stub generator used in RPC [Birrel 83].

The stub generator runs as a part of the database and has a fairly simple implementation.

Given a method interface for a type T of the form:

method (arg1: T1, arg2: T2, ...) returns (result)

the C++ stub generator constructs a stub function based on the skeleton in Figure 4-11

with each of underlined items replaced by the corresponding item from the method

interface. Because the database stores a parsed version of the method interface, it is easy

for the veneer generator to obtain the appropriate items with which to “fill in the blanks.”

(For explanatory purposed, we have simplified the skeleton somewhat. For example, the

call used to send an argument is not always put_handle but rather depends upon the type

of the argument being sent.)

Constructing a new stub generator is essentially a matter of modifying an existing stub

generator to use the syntax of the new language. For example, Figure 4-12 shows the

skeleton that would be used for an Emacs Lisp stub function. It conceptually the same as

the C++ version, though surface differences show up because of Lisp’s different syntax

and lack of explicit type declarations. (Notice that the method name is prefaced with the

name of the type to ensure uniqueness, and that the implicit self argument in the Thor

version is made explicit. In the next section, we will consider in more detail these and

other changes caused by differences in the client language.)

result * method (T1 arg1, T1 arg2, ...)
{

result* res=0;
begin_invoke(self, method-index);
put_handle(arg1); put_handle(arg2); ...

if (do_invoke())
NEW_TH_OBJ(get_handle(), result, res);

end_invoke();
return res;

}

Figure 4-11: C++ Stub Function Skeleton

53

Currently, the stub generator is implemented as a program running in the database that is

explicitly modified to support new languages; this has proved reasonably convenient. One

might build a “universal” stub generator, which takes a description of the stub function

skeleton for an arbitrary language and automatically generates the stub functions directly

from the description. The challenge is to make skeleton description language sufficiently

powerful without making it as difficult to use a full-fledged programming language. (For

example, some form of looping is required, as implied by the ellipses in the skeleton

examples.) This might be an interesting direction for future work.

4.3.2 Different Type Systems
The C++ type and function dispatch system are rich enough to completely mirror those of

Thor. (In particular, the C++ type system supports subtyping, and the dispatch

mechanism allows the same method name to dispatch to different functions, with the

appropriate function chosen based on the type of the receiver.) This allows the C++

compiler to typecheck Thor calls at compile time , and also permits method names to be

used “as is”. In this section, we consider how the veneer interface changes for languages

with more restrictive type and function dispatching systems.

4.3.2.1 Weakly-typed Languages
Languages such as Lisp have the simplest possible type system, in which there are no

explicit type declarations and function dispatching depends only on the name of the

function, not the type of the receiver. As we saw in Figure 4-12, this requires several

changes to the stub function interfaces. First, the method name is prefaced with the type

name, to ensure uniqueness; for example, the next operation of the list type would be

called list-next in the Lisp veneer. (The type and method name are separated by a ‘-’, a

(defun T-method (self arg1 arg2 ...)
(begin-invoke self method-index name)
(put-handle arg1) (put-handle arg2) ...
(let (result ((if (do-invoke)

(get-handle) nil))
(end-invoke)
result))

Figure 4-12: Lisp Stub Function Skeleton

54

character that never occurs in Thor type or method names, so uniqueness of the stub

function name is assured.) Second, the implicit self parameter in the Theta version is

made explicit. Finally, the type declarations for the arguments are completely omitted in

the actual code, though they should be maintained in a comment for the benefit of the

client programmer. Any type errors in a weakly typed language will of course go

unreported at compile-time, but Thor will detect and report any type errors at run-time.

4.3.2.2 Type Systems without Subtyping
Many older statically-typed languages, such as C and CLU, support explicitly declared

types, but do not have any form of subtyping or method dispatching. The name clash

problems caused by the lack of method dispatching can be solved in the same fashion as

for the weakly typed language (by concatenating the type and function name); indeed this

is style already required by CLU and commonly used by C programmers.

The lack of subtyping is more of a challenge. The cleanest approach is for each type to

include explicit conversion functions that convert between it and its immediate supertypes,

thus giving the client the ability to use the subtype wherever the supertype is expected,

without allowing any illegal conversions. (Because every stub object has exactly the same

representation, it is trivial to convert a stub object of one type into a stub object of another

type.) For example, if type D has supertypes B and C, which have supertype A, then stub

type D will include conversion functions to B and C, which will include conversion

functions to A. To make things more convenient, each subtype includes all of the methods

of its supertypes with the receiver type declaration specialized to the subtype, so that no

subtype-to-supertype conversions are ever necessary for the receiver argument.

A less clean, but more convenient approach is currently used in our C veneer, which treats

C as if it were a weakly typed language. Each of the stub types is given a different name

to serve as documentation, but they are all typedef’d to the same type for purposes of

typechecking. This eliminates the need for explicit subtype-to-supertype conversions but

also eliminates any possibility of compile-time typechecking.

55

4.3.2.3 Type Systems without Multiple Supertypes
Finally, languages such as Modula-3 and Object Pascal have subtyping and dispatching,

but do not allow a subtype to have multiple supertypes. Our solution is basically the same

as in the previous section: a type is declared to be the subtype of any one of its supertypes

(chosen arbitrarily) but includes conversion operations to convert it to any of the other

supertypes. Few explicit conversion are likely to be required because the client language

already does the right thing for single supertypes, and because multiple supertypes are

currently not used very frequently in Thor.

4.3.3 Coordinating Client and Database Garbage Collection
Some languages, such as Lisp, Smalltalk, and CLU, have a garbage collector that

automatically disposes of objects that are no longer referenced. Thus, garbage collection

performs a function similar to that performed by the smart pointers defined as a part of the

C++ veneer. However, because the garbage collector is a built-in and often non-

customizable part of the system, it is difficult to achieve the necessary degree of

cooperation between the veneer and database garbage collectors, raising issues that we

discuss in this section.

When a stub object is disposed of, the database needs to be informed so that it knows that

the database can reclaim the handle table slot and potentially garbage collect the object.

Some garbage collection systems, such as that of Smalltalk, allow user-defined

“finalization hooks” that are automatically run when an object is about to be disposed of.

In such a language, the hook can easily be defined to inform the database of the stub

object’s impending demise. Other languages, such as Lisp, do not provide such hooks. In

that case, client programmers must explicitly call a free operation to release handles and

allow the database to garbage collect the associated objects. If such an operation is not

provided, the stub objects in the veneer will be automatically garbage collected, but newly

created or newly unreachable objects in the database will not be subject to garbage

collection until the client program terminates.

A second issue is how to avoid creating redundant stub objects while still allowing stub

objects to be garbage collected. Recall that we used a table VH to map between handles

56

and existing stub objects, which we used to avoid creating a new stub object if the same

handle was returned again by the database. In a system with garbage collection, the

references in VH will prevent the stub objects from ever being garbage collected!

Smalltalk provides a special mechanism for avoiding this problem: weak arrays. A weak

array is like a standard array, except that references in it are not traced for purposes of

garbage collection, thus allowing the referenced items to be potentially garbage collected.

Furthermore, the entry in the array is automatically cleared when the associated item is

garbage collected, allowing the veneer to detect whether the associated stub item still

exists.

In the absence of weak pointers or arrays, there are two not entirely satisfactory

compromises possible:

• allow redundant stub objects. This will cause additional work for the garbage

collector, and will waste storage if the client maintains references to many redundant

stub objects.

• prevent stub objects from being garbage collected unless the client explicitly clears out

the entry in VH by calling free on the object. The disadvantages are the dangers and

inconveniences of explicit deallocation. (If the stub object has other references in the

client, but the corresponding Thor object has no other references, the Thor reference

could be garbage collected, leaving the veneer references dangling.)

The general problem is that the veneer and the database need to perform a simple form of

distributed garbage collection, the need for which was not anticipated by many language

designers. Unfortunately, unless the garbage collector provides sufficient hooks for

customization, we don’t have any magic bullets for remedying these shortcomings.

4.4 Language Independence Issues
We claimed that the veneer design was language independent. We will argue that it is not

only possible but also easy to implement the veneer design in essentially any client

language. Several features of the design contribute to this property. First, the object

57

representation used is quite simple. The client language only needs to be able to represent

integer handles, plus a fixed set of basic types.

Second, generating the stub functions for an arbitrary client language is easy. The veneer

generator itself is fairly simple, because each stub function has exactly the same structure,

and because the database stores the interfaces of the types it supports in an already-parsed

form. Adding support for a new language is as simple as modifying an existing veneer

generator to produce output in the syntax of the new client languages. For example, we

were able to quickly modify the C stub generator to fully support C++, even though the

class and subtyping mechanisms in C++ are much richer than what is available in C.

Similarly, [Helfinstine 94] describes his implementation of a Modula-3 veneer for Thor;

the author reports that it was not difficult to modify the C++ stub generator to output

stubs for Modula-3.

The only non-trivial requirement to implement a veneer is that the client language support

a cross-domain communication mechanism (for example, interprocess communication) so

that it can exchange message with the databases. Most client languages have such support

or allow it to be added in an extension language. Attesting to the portability of the design,

we have implemented veneers for C, C++, Emacs Lisp, Perl, and TCL.

59

Chapter 5.

Batched Futures

This section discusses batched futures, the main contribution of this thesis. It begins with

an abstract description of futures and how they are used to achieve transparent batching.

It then presents an efficient implementation of batched futures in Thor.

5.1 Introduction to Futures
In general, a future can be viewed as a reference to the eventual result of a call. Like the

actual result, it can be passed as an argument to other calls, included in data structures,

and so forth. If the actual value referred to by the future is required and not yet

computed, the client waits until it is available. Futures were introduced in the parallel

programming language Multilisp to hide caller-callee parallelism, but we use them for a

different reason: to defer calls so that they can be batched.

An important point to realize is that for many calls, the actual return value is not of

immediate interest to the client. This is especially true in a system such as ours that

conceals the representation of objects through handles: the particular value of a handle is

never of any interest, since the only thing a client can do with a returned handle is pass it

as an argument to another call. (In many veneers, client programmers will not even know

that handles exist because they are encapsulated inside of stub objects.)

The basic idea of our batched futures design, in its simplest form, is to batch calls as long

as they return handles. When the client makes such a call, the stub function records

information about the call, and returns a future to the client instead. In our system, the

future is essentially just an integer chosen by the veneer to stand for the eventual result of

a particular call4. Later calls in a batch can refer to results of earlier ones using futures

4Similarly, a handle is really just a arbitrary integer chosen by the database to designate a particular
object; there is no particular significance to the actual value.

60

and thus a sequence of interrelated calls can be batched together. As soon as the client

makes a call that will return a basic value, or commits a transaction, the veneer sends the

entire batch of calls to the database in a single domain crossing. As the database processes

each call, it makes a mapping between the result and the corresponding future to allow the

result to be retrieved for later uses of the future, and sends back to the veneer the actual

values for each of the futures in batch.

Note that the mechanism depends upon knowing the signatures of the database methods,

so that the veneer can tell whether to send a call immediately or defer it. This information

is available in the interfaces stored in Thor and embedded in the stub functions stored in

Thor. Stubs that return handles defer their calls for later execution; other stubs cause the

execution of their call and the preceding batch of deferred calls.

5.2 Example
Consider the nth function, which a client application might define to return the nth value in

a list of integers as seen in the following pseudocode:

nth (l :int_list, n: int) returns(int)
for i = 1 to n do

l = l.next()
return l.first()

end nth

It works by calling the next operation n times to find the nth node in the list. Then it uses

first to get the integer associated with that node. Using standard invocations, the function

requires n+1 pairs of domain crossings.

With batched futures, the same code requires only a single pair of domain crossings.

Inside the for loop, the client code makes no domain crossings. The next stub function in

the veneer simply returns futures f1...fn to stand for the results of the calls and adds

information about each call to a queue of batched calls. Each future is used as the receiver

(i.e., first argument) of the following call. Finally, the client calls l→first(), which returns

a basic value. The stub function for first sends the batch of calls to the database, which

61

evaluates the set of batched calls and sends back the requested result for first. This entire

process is depicted in Figure 5-1.

In essence, the batched calls form a simple program that recreates the effects of a set of

possibly interrelated calls. The programming language allows just a few actions:

• calling an operation

• assigning the result of an operation to a future usable as an argument to later calls

• returning the result to the client

The database’s job is simply to interpret this programming language efficiently. We will

describe how it does so in the next section.

Client Code
int nth (int_list *l, int n)
{

for i = 1 to n do
 l = l.next();

return l.first();
}

Thor
3

8

7

f1

fn

7

f1 = h1.next()
f2 = f1.next()

...
return fn.first()

Batched Program

Figure 5-1: Batching interrelated calls using futures

The nth function is not necessarily a realistic example, because it would logically be

included as operation in the database. However, one aspect of the example is realistic: it

navigates a chain of pointers before reaching a point where actual values are of interest.

Clients often navigate other, less predictable chains of pointers. It is not realistic to expect

that the database includes a built-in operation for every chain of pointers that the client

might follow, both because it is difficult to anticipate every useful chain and because to do

so would create a very cluttered interface. Batched futures help resolve the dilemma: type

interfaces can consist of a logical set of operations, possibly fine-grained, that are

combined based on the particular needs of the application.

62

5.3 Implementation
There are three key issues in the implementation of batched futures:

1. how to represent batched futures in the veneer.

2. how to maintain the mapping between futures and actual objects in the database.

3. how to limit the size of the mapping

Futures have to be represented in such that a way that they are interchangeable with

handles in stub objects. A mapping has to be maintained so that the database can associate

a future used as an argument in a call with the corresponding result, and the size of this

mapping has to be limited, since each call returns a new future and the mapping could

potentially grow without bound. We consider each of these issues in turn in the following

subsections.

5.3.1 Representing Futures
Futures are simply a special kind of handle, tagged to distinguish them from normal

handles. In our implementation, we tag futures using the sign bit: futures are negative,

handles positive. This convention is followed in our examples and diagrams.

Futures are chosen by the veneer, in a manner to be explained in the next section. Like

handles, futures are not manipulated directly by the client but are encapsulated in a stub

object, to which the client program is given pointers. Because of this level of indirection,

there is only one instance of each future; on assignment, clients copy pointers, not the stub

objects themselves, just as with handles.

Client

x #-1

Figure 5-2: Representing Futures

5.3.2 Mapping Futures to Objects
Two parallel tables maintain the mapping between futures and objects, analogous to the H

and VH tables that map handles to objects and stub object. The veneer future table VF

maps futures to stub objects, and the database future table F maps futures to actual

63

objects. Slots in VF and F are initialized as a result of client calls, as we shall describe in

the following subsections.

5.3.2.1 Maintaining VF
Slots in VF are initialized when the a stub function returns a future to the client. The stub

functions themselves are unchanged when futures are used, but the function that reads the

result object from the database is modified to choose a future instead and inform the

database of its choice.

Figure 5-3: Returning Futures

The veneer performs the following steps to create a new future, as shown in Figure 5-3:

1. increment a global counter to determine the index i of the future.

2. constructs a message to tell the database that the result of the last call should be

mapped to future i. (The database will receive the message as part of the next batch of

calls.)

3. allocate a stub object o that contains future i

4. store a reference to o in VF

5. return o to the client program.

Because the get_object function and the containing stub function are so simple (see Figure

5-3), they are small enough to be inlined into the client program, avoiding the expense of a

function call.

stub_obj* get_object () // version using futures
{

1 future_index = future_index + 1;
2 batch message to Thor: “assign call result to future future_index”
3 stub_obj* o = new stub_obj(-future_index);
4
5

VF[future_index] = o;
return o;

}

64

5.3.2.2 Maintaining F
The database initializes slots in F when it processes a batch of client calls. Each batched

call specifies the future index i that should be mapped to the result, as described in the

previous section. After the database processes the call, it stores the resulting object in

F[i]. When future i is used as an argument to a call, the server looks in F[i] to find the

corresponding object. Because the server processes the calls in the same order they were

made, the arguments of calls are determined by the time the server processes them.

Veneer

x

VF

F

Database
f1 = h1.next()

8#-1

Figure 5-4: Mapping Futures to Objects

The following is a more detailed description of the steps performed by the database when

it processes a call message from the client:

• Read the method name and arguments

• Look up each of the object arguments in H or F, depending on whether the index is

positive or negative.

• Typecheck and perform the call

• If the result is a basic type or futures are not enabled, send the result back to the client,

otherwise store a reference to the call result in F[i], where i is the index specified by

the client.

Notice that the only overhead that has been added to the server stub is a couple of

inexpensive conditionals. This overhead is minuscule and is dwarfed by the amount of

time saved in avoiding a domain crossing and the amount of time spent performing the

actual operation.

65

5.3.2.3 Example
Suppose VF is empty when the nth function shown in Figure 5-1 runs. After the for loop

runs, futures 1,...,n will be assigned to results of the calls. Call i +1 will refer to the result

of call i by using future i, and the slots of VF will point to the stub objects holding these

futures.

When the calls run at the server, the slots in F will be assigned pointers to the objects

corresponding to the results of the calls, and the object corresponding to the result of call i

will be computed before it is used in call i +1. The operations inside the database never

need to be concerned about the case where one of their arguments is an unevaluated

future. The actual Thor operations called by the dispatcher require no modifications and

run at their full speed.

5.3.3 Limiting the Size of the Future Mapping
Because each deferred call returns a new future and a future could be used as argument to

any later call, tables F and VF can grow arbitrarily large.

Our implementation solves this problem by periodically replacing futures with the

corresponding handles. After the number of futures passes a limit, the veneer flushes the

pending invocations and piggybacks a request to the database to send the object handle

equivalents for all futures currently in use. (The futures currently in use are the ones that

have not yet been freed by the client.) The veneer uses the pointers in VF to update the

stub objects. Because client copies pointer to the stub objects, and not the stub object

themselves, we do not have to worry about updating and tracking multiple copies of each

stub object.

The veneer and the database can then safely reclaim all slots in F and VF. Thus futures

require only a constant amount of additional storage relative to normal calls.

Logically speaking, there is no reason why the database could not send back the

corresponding handles after every batch of calls. However, there are performance

advantages to sending handles in larger batches because it is cheaper to do one big read

than a lot of small ones. Also, the longer the database waits, the greater the likelihood

66

that the client has freed futures in the batch, allowing the database to avoid sending back

the corresponding handles, as discussed below.

Figure 5-5: Remapping Futures

5.3.4 Stub Object Storage Management
Managing storage associated with stub objects containing futures is not a problem if the

client language is garbage collected. After the veneer updates the future in a stub object

with corresponding handle, it clears out the slot in VF. The stub object will not be

discarded while still referenced from VF, but will be subject to garbage collection as soon

as it is updated with the correct handle and the slot in VF is cleared.

As mentioned earlier, other languages require the programmer to use explicit deallocation.

In such languages, the free_object operation should clear out the entry in VF as well as

reclaiming the object storage. When the veneer attempts to replace futures with their

actual values, it can simply skip the entries in VF that have been cleared, since otherwise it

might overwrite memory that had been reallocated for other purposes. As an

optimization, the veneer can tell the frontend at future remapping time exactly which

futures have non-empty entries of VF, saving the expense of sending back handles for

futures that have been freed.

There is one other concern regarding stub objects containing futures. When stub objects

contain handles, the veneer almost always ensures that there is only one stub object for

each database object. (It is possible that if an object migrates from one server to another,

it will be assigned two or more different handles by the frontend. However this should be

Before After

-1

F

f:7
g:3

x

VF

#2#2

F
f:7
g:3

H

VF

x

H

67

a rare occurrence.) The same property does not hold for stub objects containing futures.

This is a necessary consequence of the fact that the veneer does not know what the actual

handle will be at the time the stub object is created. Therefore multiple stub objects can

refer to the same database object. Such redundant stub objects are a problem only if the

client has a very large number of active references that correspond to a small number of

actual objects. (Inactive references are not a problem because in that case the stub objects

will be freed.) Presumably, this will be not be a common occurrence. In general, we

expect that most futures are only temporaries (that is, intermediate navigation pointers)

and users won’t want to hold onto them.

If redundant stub objects are a problem, the veneer can support an operation that takes a

reference to a stub object, freeing it if it is redundant and returning a pointer to the

corresponding ‘canonical’ stub object for that object’s handle. (The operation requires, of

course, that the client has no other references to the redundant stub object.) Alternatively,

a customized garbage collector can do the same thing safely and automatically by

redirecting links from the redundant object to the canonical one so that the former can be

freed.

5.3.5 Shared Memory Optimizations
Batched futures can be implemented using Unix pipes. In this case the veneer just writes

each message to the stream but does not flush the stream until it needs a result. However,

it is faster to use shared memory if it is available. Each deferred call is recorded in a

shared memory buffer, and data written by one side is always immediately visible to the

other side without any need for flushes. (To obtain optimal performance, it is important

that when one process blocks waiting for a result, the other is woken up quickly. Our

implementation uses shared-memory semaphores to obtain this effect.) With this

implementation, the database can begin working on deferred calls whenever it has time,

even if the veneer is not yet waiting for the result of the last call in a batch. For example,

on a multiprocessor this approach allows the database to process calls in parallel with the

veneer.

68

Another shared memory optimization permits us to get rid of the F and VF tables and

future remapping entirely. The tables exist only to allow futures used in later calls to be

mapped to the results of earlier calls. The same effect can be achieved by allocating stub

objects in shared memory. Rather than passing a handle or future, the veneer passes a

pointer to the stub object, which the database dereferences. When the result of a batched

call becomes available, the database stores the handle in the stub object allocated for the

result, effectively performing the future remapping step for that object immediately.

The use of shared memory might raise the concern that the security of the system has been

somehow compromised. Note, however, that the worst a client can do is overwrite a stub

object in shared memory, which the client could do just as easily when the stub object was

in its own private address space. The database is not exposing any more information than

it was before, and its runtime typechecking will continue to prevent the client from making

illegal calls.

5.4 Other Benefits of Batching Calls
Batching calls can provide other benefits in addition to amortizing domain-crossing

overheads. Because the server can “see the future” by looking ahead in the current batch

of calls, it can often improve performance based on that foreknowledge. Here are a few

examples of how this might work:

• Thor could look forward in the call stream to see objects that will be used, and

prefetch any objects that are not already in the cache. For example, in a breadth-first

traversal, the client will make a set of calls that fetch each child of a known node. By

looking ahead, the frontend can know that is definitely worthwhile to prefetch all of

the children at once, rather than fetching each child individually as demanded by each

operation.

• An interface to a filesystem could reorder read requests in a batch of calls to optimize

disk head motion, and so forth.

• A three-dimensional rendering system could avoid performing an expensive rendering

if it determined that a later call would obscure it.

69

Of course this ability to know future calls in advance has limitations. For example, if an

argument to a call is a future, the system will not what it denotes until at least some of the

preceding calls have been evaluated.

5.5 Exceptions
If exceptions are returned immediately, then no batching can take place. However, in the

model we have proposed, in which the client makes explicit calls to check for exceptions

in the exception history, there is a well-defined point, which need not be the point of the

call, at which exception values are obtained. For purposes of batching, the veneer treats a

request for an exception value in exactly the same way it would treat an operation that

returns a basic value— batching stops and the current batch of calls is sent over to the

database to obtain the exception value. To avoid unnecessary round trips to the database,

the database sends over all of the non-null exception values that haven’t been sent yet to

the client, not just the particular one requested by the client.

Thus batching is possible assuming the client can defer asking for exception values until

they are actually needed. Because exceptions propagate, as we mentioned, the client can

often avoid checking for exceptions until the final call in a string of interdependent calls—

the last call will succeed if and only all of the preceding calls succeeded. Thus checking

for exceptions and achieving high batching factors need not be mutually exclusive aims.

71

Chapter 6.

Experimental Results

In this section we characterize the gains that can be expected from using futures, and

present experiments showing the benefit obtained on various workloads. We begin with a

simple mathematical model of the system’s performance. We then exhibit systems that

show the predicted performance across a range of batching factors and domain crossing

costs. Finally, we give results from an OODB benchmark running on Thor that show that

batched futures yield useful performance increases even in unfavorable conditions where

only low batching factors can be achieved.

6.1 Performance model
The average cost of a call can be modeled by the formula

t
t

Bc
d+

where tc is the cost of running a call, td is the cost of the a pair of domain crossings, and B

is the “batching factor”: the total number of calls divided by the number of pairs of domain

crossings. When there are no futures, B = 1 (since each call requires a pair of domain

crossings); as we defer calls, B increases and the average cost of a call goes down. Note

that the model assumes that td is independent of B, which is true in actual systems. In

other words, the amount of time it takes to switch between domains is independent of the

amount of data (that is, the number of batched calls) being transferred between the two

domains.

The model predicts that, as B increases, the average cost of a call will asymptotically

approach tc, dropping rapidly at first and then with increasing slowness as td/B goes to

zero and tc begins to dominate the total cost of the call.

72

The key points to realize are that tc provides a lower bound on the average cost per call,

and that the larger the ratio of td to tc, the more a system has to gain from batched futures,

but also the higher the batching factors it must achieve before the domain crossing

overhead td/B becomes negligible. For example, if the ratio of td to tc is r, then a batching

factor of r will yield performance that is within a factor of two of the optimal value.

6.2 Measured Performance: Best Case
The best case for batched futures is a client program in which all of the cross-domain calls

can be batched. To experiment with a program that attains this best case, we considered

the nth function described earlier. Each operation in the nth function returns a handle, so

all of the calls can be batched, leading to an arbitrarily large batching factor B.

To show how the speedup provided by batched futures varies across a range of values for

tc and td, and also to demonstrate a range of systems to which batched futures are

applicable, we considered three systems:

1. The first system is a simple client-server system with a very low tc value and a

comparatively high value for td. The client and server run in different process on the

same machine and communicate using a shared memory buffer. The server, written in

C++, implemented just the essential elements necessary to run the experiment: a linked

list, a very simple dispatcher, a handle table, and a future table. It did not implement

typechecking, garbage collection, concurrency control, persistence, or any of other

features of Thor as a database. The stub functions and the client program were

essentially the same as those in the case of Thor, however.

2. The second system is Thor running in its typical configuration, in which the client and

frontend are running on the same machine but in different processes. The tc for this

system is significantly higher than that of the first system, in part because the

functionality provided by Thor is much greater and in part because the frontend

dispatcher is currently highly unoptimized.

3. The third system is again Thor, but with the client and frontend running on different

machines. (It is possible that we will run Thor in this fashion in the case of client

73

machines with memory capacities too small for an effective frontend cache, or without

sufficiently safe protection domains.)

The observed performance of each of the systems are shown in Figure 6-2 through Figure

6-4. The experiments were compiled using DEC C++ and run on a lightly loaded Alpha

AXP3000 running OSF/1.3. Each of the Thor experiments ran with a warm cache, so that

the Frontend did not have to go over the network to fetch objects. The average time per

call was calculated by dividing the actual running time of the program by the number of

calls on the database.

As predicted by the model, the average time per call drops rapidly at first and then

approaches tc for that system with increasing slowness; the shape for each graph resembles

the graph of 1/B scaled by td and shifted up by tc.

In the first system, batched futures lead to a greater than tenfold increase in performance

for sufficiently large B, in the second only a threefold, and in the third, again about a

tenfold increase in performance. The varying benefits of batched futures are explained by

the differences in tc and td across the different systems, as summarized in the Figure 6-1,

which gives approximate values for tc and td in microseconds for each system. The values

for td were estimated by observing the difference between average call time for B=1 and

B=2, which works out to be td/2. The value for tc was estimated by subtracting td from the

average call time for B=1, which is tc + td.

Figure 6-1: Values of tc and td for some systems

tc td

1 10 126

2 75 130

3 100 905

74

We verified our estimates of tc and td for Thor verified by running the nth function on a

version of Thor in which the client and the database were linked into the same address

space, allowing us to measure tc directly (because td is zero.) In that case, we found that

tc averaged around 94 microseconds, in the same range with our estimates. It’s interesting

to note that with batched futures the average cost per call dropped to a value below this

figure, to around 80. This is probably because batched futures eliminate the need to read a

result handle after every call. Instead, a whole batch of future-to-handle mappings is a

read at the same time, which is more efficient. The other interesting result is the fact that

tc is about 33% higher when Thor and the client run on different machines than when they

run on the same machine. This is explained by the fact that the Unix calls to read and

write from sockets are more expensive than those using our custom shared memory

communication mechanism.

As mentioned, the maximum speedup for batched futures with Thor in its normal

configuration (client and frontend on the same machine) is around 3. The speedup is small

because operation marshaling, typechecking, and dispatching in Thor have not been

optimized and are currently rather expensive, leading to a high value for tc even though the

operations themselves are simple. When the operation dispatcher is optimized, we can

expect to see speedups from batched futures closer to those seen in the simple IPC system.

Even Thor’s relatively large value of tc is dwarfed in comparison with the cost of a

network communication, as seen in the third system. In that case, batched futures again

lead up to a tenfold speedup. If batched futures were used in a system that had the tc of

our IPC system and the td of a system communicating over a network, we would expect to

see up to a 90 fold performance improvement. Obtaining this speedup, however, would

require hundreds of operations being combined in each batch.

75

B atching F actor

T
im

e/
C

al
l (

us
ec

)

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Figure 6-2: Best Case Performance— Simple IPC

B a tc h in g F a c to r

T
im

e/
C

al
l (

us
ec

)

0

2 5

5 0

7 5

1 0 0

1 2 5

1 5 0

1 7 5

2 0 0

2 2 5

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6 2 8 3 0

Figure 6-3: Best Case Performance— Thor, Local

B atch ing Fac to r

T
im

e/
C

al
l (

us
ec

)

0

1 00

2 00

3 00

4 00

5 00

6 00

7 00

8 00

9 00

1 00 0

1 10 0

0 1 0 2 0 3 0 4 0 5 0 6 0

Figure 6-4: Best Case Performance— Thor, Remote

76

6.3 A Less Favorable Case
Not all applications are as favorable for batched futures as list descent. For example, in

graph traversals, many values have to be known immediately, such as the number of nodes

connected to the current node, meaning that many calls cannot be deferred and the

batching factor is necessarily low. In this section, we give an example of such an

application, and show that even under such unfavorable circumstances useful batching

factors and performance increases still result.

As a representative application, we implemented various traversals from the OO7 suite of

benchmarks for object-oriented databases [Carey 92]. The OO7 database consists of a set

of interconnected parts, arranged in a hierarchy of complex assemblies, base assemblies,

composite parts, and finally atomic parts. The operations on the parts and assemblies are

quite simple: either returning a connected part, or returning a scalar attribute, such an

integer id or a character documentation string. We implemented the parts and their

primitive operations as types in the Thor database, and the traversals in the Thor C++

veneer using the methods defined by the OO7 type interfaces.

In practice, one might safely increase performance by implementing parts of the traversal

inside of the database using Theta, the programming language for the Thor database. We

wished, however, to assess the worst-case scenario, in which the client performs a large

number of very fine-grained interactions with the database, many of which need to be

performed immediately.

We ran OO7 traversal 2b, the traversal that demands the greatest number of fine-grained

database calls. The traversal visits every part in the database, swapping the x and y

coordinates of each atomic part. It makes a total of 207,399 calls on the database and has

an actual running time of 46.19 seconds, for an average of 222 microseconds a call.

77

46.19

27.25

15.28

0

10

20

30

40

50

Before

Futures

Inside DB

Batch Factor: 2.33
Speedup: 1.7

Figure 6-5: OO7 Traversal Performance

The batching factor was low, around 2.33, but not so low that batched futures did not

yield useful performance increases. Even in a program such as the OO7 benchmark that

needs to know many values immediately, the calls are about evenly balanced between

operations that return objects and can be deferred, and calls that return values and need to

be performed immediately.

As seen in Figure 6-5, batched futures increased the performance by a factor of 1.7,

decreasing the running time from around 46 seconds to 27 seconds. How good is this

improvement? To provide a basis for comparison, we measured the time for the traversal

when the client program was linked into the database, so that the domain crossing

overhead was zero but all of the other costs were the same. In that case, the time to

perform the traversal was 15 seconds, so batched futures brought us to within a factor of

two of the optimal time. The total time when running inside Thor is about a third of the

normal value, which matches our measurements in the list descent case that show tc is

about a third of tc + td, the total overhead of running an operation without futures.

79

Chapter 7.

Extensions

In this chapter, we introduce several extensions to the batched futures model that increase

the amount of batching that is possible.

7.1 Futures for Basic Values
One obvious extension to batched futures is the ability to use futures for operations that

would ordinarily return basic values. Sometimes the client does not need to know basic

value results immediately, if at all. For example, the client can swap the values of two

slots in an array of integers without knowing what those values are, or sum a set of values

without knowing the values of all of the intermediate results, as long as the database keeps

track of the intermediate values and allows the client to refer to them using futures.

The original, parallel version of futures allowed futures to be returned in place of basic

values, while remaining completely transparent to the client programmer. However, this

transparency came at a cost: the system had to add tags to every value to indicate whether

it was a future or an actual value. Every time an operation depended on the actual value

of an object, it had to check the tag to see if the object was a future and block if so until

the actual value was available. These two requirements are incompatible with the

demands of our veneer. Many client languages allow direct access to all of the bits of a

value and will not tolerate tagging; furthermore inserting the necessary tag checks would

require modifications to the client language compiler.

We therefore expose the distinction between futures for basic values and actual basic

values to client programmers, allowing them to convert between the two forms on

demand. (Our scheme is related, but not identical to the promises mechanism used with

Mercury call streams; the small but significant difference is that futures for values can be

passed as arguments to Thor operations without blocking.) Like promises, futures for

80

values are distinguished from normal values by making them a distinct type. For each

basic value type T, the veneer defines a corresponding stub type Thor-T; we shall refer to

such types collectively as ThorValues. (For example, the stub version of a client integer is

a ThorInt. Similarly, the veneer defines ThorChars, ThorFloats, etc.) Conceptually, a

ThorValue can be thought of as a pointer to a value that lives inside Thor. Each

ThorValue type supports a ‘dereferencing’ operation that returns the corresponding client

value; this is analogous to the claim operation for promises. Unlike promises, ThorValues

also support a creation operation that encodes a client value as the corresponding

ThorValue.

To allow futures for values to be passed as arguments without claiming them, the veneer

type interfaces include “futurized” versions of each stub function that take and return

ThorValues rather than basic values. For convenience, we also retain the standard

versions of the stub functions, so that the client does not have to convert all client values

into ThorValues before passing them as an argument to a Thor operation. If the client

wishes to batch a call containing a mix of client and Thor values, it will need to convert

the client values to Thor values. Notice that, as with handles, the veneer can batch up a

number of interrelated calls without communicating with the database. Unlike with

handles, the client has a way of obtain the actual representation of the return result.

A ThorValue is represented in the veneer as a union containing either an actual basic

value, or a future for a call that will return a basic value, with a tag to indicate which is the

case. If the client attempts to ‘dereference’ a ThorValue containing a future, the veneer

sends the current batch of calls to the database.

To process a set of batched calls that use ThorValues, the database keeps a mapping

between each future for a value and the corresponding basic value result, and sends back

the actual results to the veneer in a batch. The veneer then overwrites the futures in the

ThorValue stub objects with their actual values. Thereafter, the value for each of the

ThorValues used in that batch of calls is available immediately without consulting the

database.

81

As an optimization, the veneer can store the value of the future in some ‘raw’ form when

it first gets it and defer the decoding until the client actually asks for the value. This

allows the veneer to save the expense of decoding results that are only used as

intermediate values by the client. For example, suppose the database and the client

language use different formats for representing floating point numbers, and that it is

expensive to convert between the two formats. If the client does not always need the

values of the floating point numbers, the veneer could increase performance by performing

the conversions lazily. (It might be advantageous to keep a copy of the original

representation even after the number was converted, to avoid re-encoding the number if it

is passed as an argument to another database operation.)

When futures are used for basic values, they are no longer completely transparent. The

client must insert calls to obtain the client values corresponding to ThorValues when

desired, and possibly also to wrap client values as database values. However, client

programmers are always free to write their programs as usual with the normal version of

calls, then convert them to use futures later as an optimization.

One concern is the proliferation of stub functions: adding futures for basic values has

approximately doubled the number of stub functions. (The number is not exactly double

because stub functions whose arguments and return values consist entirely of handles do

not need a futurized version.) We can avoid substantially increasing the code size by

inlining the stub functions, which is desirable in any event because they are small and fairly

lightweight, especially when futures are being used. The other concern is that client

programmers will be confused by a cluttered interface containing multiple versions of each

stub function. We can minimize this problem by choosing sensible conventions for naming

and ordering stub functions so that the futurized versions do not interrupt the flow of the

interface. (The conventions we suggest are to use ALL-CAPS for the name of the

futurized version of a stub function and to place them after all of the normal stub

functions, where they can be easily ignored.)

We have not yet implemented futures for basic values. However, we have done some

calculations of how they would increase the batch size for OO7 traversals and what effect

82

that might have on performance. Traversal 2b, the example we considered in this thesis,

would benefit from the use of futures for basic values, were they available, because all of

the calls to swap the integer x and y attributes can be deferred; the client has no need to

know the actual x and y values.

Using promises, the average batch size increase from 2.33 to 3.47, and the predicted

performance using the mathematical model increases from 1.7 times the standard

performance to over 2 times faster.

7.1.1 Example
The following shows the normal and futurized versions of the fetch and store stub

functions for an array of integers.

The interface first defines the normal versions of the calls, then the futurized versions,

which take and return ThorValues wherever the original versions would take or return

client values.

The client could use these functions to define a function that swaps two elements of an

array with no additional domain crossings:

class IntArray {
...
int fetch(int slot) ;
void store(int slot, int val);

ThorInt* FETCH(ThorInt* slot) ;
void STORE(ThorInt* slot, ThorInt* val);

};

void swap (int_array *a, ThorInt* i, ThorInt* j) {
/* Swap a[i] and a[j] using futures */
ThorInt* a_i = a→FETCH(i);
a->STORE(i, a→FETCH(j));
a->STORE(j, a_i);

}

83

7.2 Batched Control Structures
When a control structure in the client program depends upon the result of a database call,

that call cannot be deferred, which limits the degree of batching that can be attained. For

example, if an if statement depends upon the result of a call that returns a boolean, that call

must be performed immediately, so that the correct branch in the client program can be

chosen. What we would like to do is send the control structures along with the batched

calls, and have them evaluated inside the database. If we could batch entire loops and

conditionals, very high batching factors could be achieved.

Ultimately, we would like to be able to move arbitrary, safe pieces of the client program

into the database protection domain. To do so in general is difficult and goes beyond the

scope of this thesis; the veneer would need a detailed knowledge of the structure of the

client program and would essentially become a compiler or interpreter for the client

language. However, for certain restricted but useful cases, it is quite simple to allow

batches to include control structures.

Consider the following example, which increases the salary of all managers by $1000 and

all other employees by $500.

The code uses the elements_array function to obtain the members of the employees

collection, and increases the salary of each employee by either 1000 or 500 depending on

the results of the is_manager() call.

Notice that the code, except for the control structures, consists of deferrable calls on the

database. These conditions make it possible to batch the control structures along with the

calls. The basic idea is that instead of using client language control structures, the

Array<th_employee*> a = employees→elements_array();
for (int i=0; i < a.size(); i++) {

th_employee* e = a[i];
if (e→is_manager())

e→increase_salary(1000);
else

e→increase_salary(500);
}

Figure 7-1: Client Control Structures

84

application uses veneer calls that represent the control structure. These calls are deferred;

they include the names and arguments to the control structure, allowing the database to

evaluate the control structure itself. In C and C++, the new control structures are

implemented as preprocessor macros, so that they have the syntactic form of control

structures even though they are actually calls.

7.2.1 The Meaning of Batched Control Structures

employee *empl;
FOREACH(empl, employees→elements()) {

IF (empl→IS_MANAGER()) {
empl→increase_salary(1000);

}
ELSE {

empl→increase_salary(500);
} ENDIF

ENDFOR

Figure 7-2: Batched Iterator and Conditional Control Structures

In Figure 7-2, we show how the Figure 7-1 might be rewritten using batched control

structures. It uses two different batched control structures: FOREACH and IF. The

FOREACH control structure is used to call a Thor iterator and takes two arguments: a

future for the iterator that will control the loop, and a loop variable that will refer via a

future to the value yielded by the iterator each iteration. The ability to call iterators

directly, rather than obtaining their results as an array, is a new feature made possible by

the fact that the entire FOREACH control structure is batched and evaluated inside the

database. The IF statement takes one argument: a future for a boolean that will control

the branching in the database. The remaining structures, i.e. ELSE, ENDIF and

ENDLOOP, take no arguments and simply batch a call to indicate where the first

matching unclosed control block ends. They are necessary because the database has no

other way of knowing when a block ends, since it has no access to the actual client code.

The stub functions for the batched control structures in the veneer work essentially the

same as any other stub function. The FOREACH stub function batches a message to the

database with the future for the iterator and a new future to be mapped to the yielded

85

results. Similarly, the if stub function batches an “if” call to the database with the future

for the conditional. The elements() stub function, which returns a future to an iterator,

and all of the other deferred calls, work exactly as before. In no case, however, is the

control flow of the client program altered. Note that all the calls, including the conditional

test, are deferred; we are assuming that the veneer is using futures for basic values as well

as objects, as described in Section 7.1.

The resulting set of batched calls sent to the database is depicted in Figure 7-3. We use

the conventions here that we have used in earlier diagrams: h represents the handle for

employees, and fi represents the ith future allocated in the course of the example.

7.2.2 Restrictions on Batched Control Structures
Several constraints on the use of batched control structures follow from the semantics of

the deferred code. These constraints stem from two essential facts:

• every statement in a block is executed exactly once on the client side, whereas in the

database the same block may be executed zero or many times.

• the database knows only the future mapped to a call result, not the name of the client

variable to which the future is assigned.

From the first fact it follows that there must be no side-effects to non-Thor client variables

within a deferred control structure. Because the side-effects are not evaluated in Thor, it

is not possible for the database to provide the desired semantics of conditional or repeated

evaluation for client side-effects. If side-effects are desired, the client can achieve them by

f1 ← h.elements()
FOREACH(f2, f1)
f3 ← f2.is_manager()
IF(f3)
f2.increase_salary(1000)
ELSE()
f2.increase_salary(500)
ENDIF()
ENDFOR()

Figure 7-3: Batched Calls and Control Structures

86

manipulating Thor objects and values. Rather than incrementing a client integer, for

example, the client can increment a ThorInt and get the actual value after the loop has

completed.

More importantly, from the first and second facts follows an “assign-once” restriction on

client identifiers. The identifiers used to refer to futures in batched control structures just

allow the results of particular calls to be used in later calls; they are not variables. For

example, consider the code on the left hand side of Figure 7-4. The meaning of this code

is that, after the IF, v refers to the future of the call of the call in the ELSE branch,

regardless of which branch is taken when the code runs in the database. In general,

identifiers obey the following scoping rule: the meaning of a use of an identifier is always

the future assigned to that identifier in the invocation statement most immediately

preceding that use, disregarding control structure. If the branch of the computation

containing that invocation statement is not taken, the identifier may not mean anything at

all— its slot in the future table can be null.

Therefore all of the identifiers in a batched control structure need to be “assign once”, that

is, used as the target of just one assignment. To ensure this, client programs should follow

the convention of using a fresh variable name for each assignment of the result of a Thor

call to a variable. This may make it necessary to duplicate some code in the case of

conditionals, as seen in the example on the right hand side of Figure 7-4. Because of the

copying of code into both branches of the statement, these transformations could

potentially lead to exponential blowup in the size of the client code, certainly an

inconvenience even though technically no expressive power has been lost.

IF (...)
v = f();

ELSE
v = g();

ENDIF
u = v→foo()
u→bar()

IF (...)
vthen = f();
u1 = vthen→foo()
u1→bar()

ELSE
velse = g();
u2 = velse→foo()
u2→bar()

ENDIF
Original Code “Assign-Once” Code
Figure 7-4: The Assign-Once Restriction

87

As a result of the assign-once restriction, variable assignments cannot be carried over from

one iteration to the next, since to do so would require two assignments: one before the

first use, and a second to change the variables value after that use.

A final restriction on batched control structures is that there is no mechanism provided for

batched recursion. This is mostly an inconvenience, because the same effect can be

achieved using an explicit stack.

7.2.2.1 Example
It might seems with all of these restrictions that it would awkward at best to write useful

batched control structures. To show that this is not the case, we present batched control

structures that perform a depth first traversal of a graph in Figure 7-5. The program uses

a queue stored in Thor to simulate the recursion; otherwise no changes from natural

coding style are required. (We introduce a batched WHILE statement to make the code

more natural; WHILE is implemented along the same lines as any other batched control

structure.) Since the OO7 benchmark consists of various kinds of traversals, it would

probably be feasible to implement OO7 entirely in terms of batched control structures,

leading to very high batching factors.

7.2.3 Evaluating Batched Control Structures
We now consider the trickier part of batched control structures: evaluating them inside the

database. At a high level, the database first typechecks the deferred code and then runs it.

void DFS(th_node* n) {
th_queue *q = th_queue_type→new();

q→push(n);
WHILE (q→empty()→IS_FALSE()) {

th_node* current = q→dequeue();
//... perform some action on current

th_node* child;
FOR_EACH(child, current→children()) {

q→enqueue(child);
} END_FOR

} END_WHILE
}

Figure 7-5: Batched Depth First Traversal

88

To do so, the database first processes the code into a tree form that expresses its

structure. The task of processing the deferred calls is very much like writing a simple

compiler or translator. The input language is a simple linear stream describing the

deferred calls; the output language is a tree describing the “program” that accomplishes

those calls. The form of this tree is like an ordinary parse tree; that is, it has a different

kind of node for each statement type and a node has subnodes as needed for that type.

For example, a FOREACH node would have three subnodes: iter, which indicates the

iterator that controls the loop, loop_var, which gives the future table index for the slot in

which the loop variable is stored, and body, which points to a body statement node

containing the code of the loop body.

7.2.3.1 Typechecking
As with standard batched futures, typechecking uses slots in F to store intermediate

results. In this case we store both the value of the future (i.e., the object it will refer to

when the program runs) and its type. For example, in the example above, slot f2 holds the

loop variable and slot f3 holds the result of evaluating the call on method is_manager().

Typechecking the code involves a linear scan of the batch of deferred calls. When the

typechecker encounters the assignment to a given future table slot, it is always the case

that of the futures in the operation being typechecked have had their types determined

already. The database uses the signature of the called operation to determine what type

will be returned and it stores this type in the future table slot for that future. For example,

the elements signature allows Thor to infer that f1 is an iterator that returns employees,

and hence that f2 will hold pointers to employee objects. Typechecking in this fashion is

correct because each future represents the result of exactly one call. If futures could

represent the result of more than one call, things would be quite a bit more complicated.

For example, a future might enter a loop with the correct type for its initial use, then be

modified after that use to contain an object of an invalid type, so that in the next iteration

type-safety is violated. However, multiple assignments to the same future are not possible

under the current design. Regardless of the identifier assigned to the result of a call,

different calls always use different futures.

89

7.2.3.2 Evaluation
Evaluating the program tree is straightforward; effectively, Thor acts as an interpreter of

the tree. For example, at a for node Thor runs the following code:

The code runs the requested iterator, assigning each value that it yields to the future table

slot specified in the for statement node. It then evaluates the body. Similarly, evaluation

functions for other control structures evaluate the appropriate blocks based on the

provided arguments.

7.2.4 Additional Benefits of Batching Control Structures
One obvious benefit of batched control structures is the greatly increased batching factors

that they permit. For example, it seems that an entire OO7 traversal, or at least substantial

pieces of it, might be written as a single batched control structure. The entire traversal

would require no extra communications with the database.

In addition to increasing the batching factor B, batched control structures also reduce the

call cost tc. They allow the set of calls in a loop sent to the database to be sent over only

once rather than once per iteration, increasing performance by reducing the amount of

data the database has to read. They also amortize the cost of typechecking and other

expensive components of tc.

Finally, the number of future table entries needed for the loop is greatly reduced. Each

iteration, the calls in the body are reevaluated with the new value for the iterator future,

and the old futures for the calls are mapped to the new result. Thus, regardless of how

many times the loop executes it uses the same number of futures.

eval_for (s: for_stmt) returns ()
 for a:any in s.iter() do

F[s.loop_var()] := a
eval_body (s.body())

end
end eval_for

90

7.2.5 Comments
Batched control structures probably represent the limit of what can be achieved without

actually inspecting the client program. They already impose a perhaps excessive burden

on the client programmer to follow the restrictions outlined above. However, the

increased batching, decreased typechecking overhead, and other performance advantages

they allow will justify their use by experienced client programmers in some cases. Based

on our measurements, typechecking and domain crossing overheads take up over 90% of

the time required for each call; batching entire loops will amortize these overheads to

negligible amounts for reasonable sized loops, leading to an order of magnitude

performance increase in realistic cases. Furthermore, in the future work section of

Chapter 8, we discuss an approach to eliminating the greatest restriction on batched

control structures, the “assign-once” restriction.

91

Chapter 8.

Conclusions and Future Work

This thesis has described the design and implementation of Thor veneers, a safe, language

independent interface to an object-oriented database, and batched futures, a general

mechanism that reduces the cost of client calls to servers that run in a separate protection

domain. Futures allow calls to be deferred until a client really needs a result and then

made all at once in a batch; later calls in the batch can refer to the results of earlier calls.

The work was done in the context of Thor, but can be used in other systems. Our

implementation depends on knowing whether a call returns an opaque pointer or a value

and can be used in any system where this information is available, for example, an

operating system. Even without this information, an approach in which the client chooses

whether or not to defer a call is always possible. The mechanism can be used when the

client and server run in different processes on the same machine, and also when the client

runs at a different machine than the server.

The thesis analyzed the performance gains that can be expected from our mechanism and

presented performance results to show that futures yield useful improvements. As part of

our performance studies, we analyzed the cost of making cross-domain calls and

developed a formula that accounts for the cost. The formula has two components: one

for the domain crossings, and one for performing the call. Obviously the relative costs of

the components will vary for different systems and for different workloads, but we believe

that the following statements are true in general.

First, the cost of domain crossings is likely to increase relative to the other costs because

of current developments in computer architecture. For example, pipelining and

superscaler processors depend upon being able to look ahead in the instruction stream. In

general, looking ahead is difficult if not impossible to do if the following instructions are in

92

a different address space or protection domain, so domain crossings are likely to lead to

increased processor stalls and cache misses. Second, although some workloads might be

restricted to calls such that it takes a long time just to do the work of the operation, many

workloads will not have this property. Therefore we conclude that our results are of

interest generally.

Although significant benefit can be obtained by using futures even when batches are small,

speedups are limited by the number of operations that can be deferred. Even with futures

for basic values, many of the OO7 benchmarks do not allow deferring very many calls,

because after a few calls the application needs to do something itself, e.g., look at a value

to determine what to do next.

To do better requires a way of getting longer chains of deferred calls. We presented a

scheme that allowed the client to combine calls with simple control structures in a batch.

The database interprets the structures and only carries out the calls on the indicated paths.

However, our scheme had limitations, most notably restrictions on side-effects to client

variables within the batched control structures and an inability to handle recursion. An

interesting direction we intend to pursue is to eliminate the “assign-once” restriction by

making assignment a deferred operation as well. By manipulating the mapping of futures

to handles, the database can achieve the same effect as an assignment to a client variable,

allowing it to perform only the assignments actually encountered in the evaluation of a

batched control structure. This would make the semantics of batched control structures

identical to those of client control structures, as long as no side-effects to non-Thor client

variables were included.

A more flexible alternative is suggested by Stamos’ work on remote evaluation [Stamos

86] , in which a client procedure is sent to be evaluated in the server address space.

However, remote evaluation as proposed by Stamos supported only a single, safe

language, avoiding the issues of safety and heterogeneity that are important in our work.

For the mechanism to work safely, the remotely evaluated procedure must not be able to

violate the security of the database. This implies that it must be written in a “safe” subset

93

of the client language. Probably not all languages have useful safe subsets but looking for

them is an interesting research direction.

One possibility for ensuring that the veneers only attempt to remotely evaluate safe subsets

of the client language is to require that they translate the subset into Theta, which is safe

by design. For many languages, this is not significantly more difficult than parsing the

program and verifying that it is safe. In addition, it solves the problem of needing an

interpreter for every client language that might be remotely evaluated in the database,

since the database can dynamically link Theta code into itself. If an entire application

could be written in the safe language subset, it could run inside the database without any

domain crossing or checking, thereby achieving the best performance.

95

Works Cited

[Adya 94] Atul Adya. Transaction Management for Mobil Objects using
Optimistic Concurrency Control, Masters Thesis, MIT, January
1994.

[Barrera 93] J. Barrera. Invocation Chaining: Manipulating Lightweight Objects
across Heavyweight Boundaries, Fourth Workshop on Workstation
Operating Systems, October 14-15, 1993, pp. 191-193.

[Bershad 90] B. Bershad, T. Anderson, E. Lazowska, and H. Levy. Lightweight
Remote Procedure Call, ACM Transactions on Computer Systems,
8(1), February, 1990.

[Birrel 83] A.D. Birrel and B.J. Nelson. Implementing Remote Procedure Calls
, Xerox CSL 83-7, October 1983.

[Birrel 94] A.D. Birrel et. al. Network Objects, Digital Equipment Corporation,
SRC Research Report 115.

[Black 87] A. Black, E. Hutchinson, H. Levy, and L. Carter. Distribution and
abstract types in Emerald. IEEE TSE, pp. 65-76, January 1987.

[Butterworth 91] P. Butterworth, et. al. The Gemstone Object Database Management
System, Communications of the ACM, Volume 34, Number 10,
October 1991, pp. 65-77.

[Cardelli 88] Cardelli. A Semantics of Multiple Inheritance. Information and
Computation, 76:138-164, 1988

[Carey 92] M. Carey, D. DeWitt, and J. Naughton. The OO7 Benchmark, Work
in Progress, October 26, 1992.

[Day 94] M. Day, R. Gruber, B. Liskov, and A. Myers. Abstraction
Mechanisms in Theta, in prep.

[Getty 90] J. Getty et al. The X window system version 11, Digital Equipment
Corp., Cambridge Research Lab, December 1990.

[Gifford 86] D. Gifford. Remote pipes and procedures for efficient distributed
communication., MIT/LCS/TR-384, October 1986, p. 24.

[Goodenough 75] J. Goodenough. Exception Handling: issues and a proposed
notation. Communications of the ACM 18(12): 683-696, 1975.

[Helfinstine 94] B. Helfinstine. Bachelors Thesis (in prep), MIT Department of
Electrical Engineering and Computer Science, 1994.

[Halstead 85] R. Halstead. Multilisp: A Language for Concurrent Symbolic
Computation, ACM Transactions on Programming Languages and

96

Systems, Volume 7 Number 4, October 1985.

[Hwang 94] D. Hwang. Indexing for Fast Associative Access to Large Object
Sets, Ph. D. thesis, MIT Laboratory for Computer Science, 1994.

[Lamb 91] C. Lamb et. al. The ObjectStore Database System, Communications
of the ACM, Volume 34, Number 10, October 1991, pp. 51-63.

[Liskov 81] B. Liskov et. al. CLU Reference Manual, New York: Springer-
Verlag, 1981.

[Liskov 88a] B. Liskov. Communication in the Mercury System, Proceedings of
the 21st Annual Hawaii Conference on System Sciences, IEEE,
January 1988, pp. 178-187.

[Liskov 88b] B. Liskov and L. Shrira. Promises: Linguistic Support for Efficient
Asynchronous Procedure Calls in Distributed Systems, Proc. ACM
SIGPLAN ‘88, June 1988.

[Liskov 90] B. Liskov. A highly available object repository for use in a
heterogeneous distributed system, Proceedings of the Fourth
International Workshop on Persistent Object Systems Design,
Implementation, and Use, pages 255-266, Martha’s Vineyard, MA,
September 1990.

[O Deux 91] O Deux et al. The O2 System, Communications of the ACM,
Volume 34, Number 10, October 1991, pp. 35-48.

[Schaffer 85] C. Schaffer, T. Cooper, C. Wilpolt. Trellis: Object-based
environment language reference manual. Technical Report 372,
Digital Equipment Corp./Eastern Research Lab., 1985.

[Stamos 86] J. Stamos. Remote Evaluation , Ph.D. Thesis, MIT Laboratory for
Computer Science, Technical Report 354, January 1986.

[Stroustrup 87] B. Stroustrup. The Evolution of C++ 1985 to 1987. In Proc. Usenix
C++ Workshop, pages 1-22. Usenix Association, November 1987.

[Wahbe 93] R. Wahbe, S. Lucco, T. Anderson, and S. Graham, Efficient
Software-Based Fault Isolation, Computer Science Division,
University of California, Berkeley.

