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Abstract

Finding a low-diameter decomposition of a network is one of the central problems
in the theory of distributed systems. Many researchers have studied this problem in
the hopes of obtaining improved distributed algorithms for maximal independent set,
(A+1)-coloring, depth first search, all-pairs shortest paths, local routing, and distributed
directories. We present here the fastest known deterministic distributed algorithm for
the optimal decomposition of a network.

More formally, we are interested in getting a decomposition of a graph into clusters
where the distance between any two nodes in the same cluster is at most d, and the
clusters are colored with x colors, such that the distance between clusters of the same
color is strictly greater than 1. We give a deterministic algorithm for the optimal
x = O(logn), d = O(logn) decomposition which runs in O(n¢) time, for any € > 0,
on an n node network in the asynchronous distributed model. It is important to get
a decomposition which is logarithmic in both x and d to implement the applications
efficiently. The previous best known deterministic algorithm for this problem took linear
time [7, 10].

In addition, we look at finding low-diameter decompositions in the PRAM model.
We describe the first deterministic NC algorithm for low-diameter decomposition. It
finds a x = O(log”n), d = O(logn) decomposition in O(log®(n)) time using O(n?)
processors. Previously no deterministic NC algorithm for network decomposition was
known.
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'Supported in part by DARPA contracts N00014-87-K-0825 and N00014-89-J-1988, Air Force Contract OSR-89-
02171, Army Contract DAAL-03-86-K-0171 and Navy-ONR Contract N00014-19-J-1698




1 Introduction

In a distributed network, a node is assumed to communicate only with its neighboring nodes, and to
have no initial information about the topology of the entire network. When we are given a network
problem that depends only on local properties of the underlying graph, we solve it most efficiently
if we can work separately on different local regions in the graph. This is because communication
across high-diameter subgraphs is expensive.

The best existing distributed algorithms for many graph problems exploit locality by utilizing
the decomposition into regions of small diameter considered in this paper. Such a decomposition
serves as a distributed data structure which improves the performance of many algorithms which
can synchronize [3], [6], route across [7], or run on the local regions [4].

It is especially important, for these types of distributed applications, that our algorithms be
deterministic. This is because we are running graph algorithms on top of this assuming the un-
derlying decomposition is good, and these algorithms could fail to perform well if the underlying
decomposition is bad. Furthermore, it seems to be difficult even to check after a randomized run
of an algorithm if one region far away is bad; it might take order of the diameter of the entire
network to find out. This is least crucial when we are dealing with a static network, where we pay
the overhead to get a good decomposition once, and then can use it over and over as a localizing
data structure for running future graph algorithms on the network. If, however, we have a dynamic
network where nodes are being added and deleted all the time, links are being added, or failing due
to faults, etc., so that we have to continually update to run on a new network topology (see [8]), it
becomes crucial to have good fast deterministic decompositions. We do not wish to continually pay
a large overhead in time, locality, or uncertainty every time we update the topology of the network
on line.

1.1 Formal Definition of the Problem

Given a graph G = (V, E), a (x,d, A)-decomposition is defined to be a coloring of all the nodes of
the graph with the following properties:

e there are y colors,
o the nodes of each color are partitioned into clusters,

o the weak diameter of any cluster of a single color class, is at most d, (The weak diameter of
a subgraph, H is defined to be the maximum over all pairs of nodes # and y in H, of the
minimum length path between & and y where this minimum is taken over all edges in G, i.e.
the distance is allowed to “shortcut” through nodes in other color classes.), and

o clusters of the same color are at least (weak) distance A apart.

When A = 1, we will abbreviate this as a (x, d)-decomposition. When x and d are both polyloga-
rithmic, we refer to this as a low-diameter decomposition.

A (x,d)-decomposition can be thought of as a generalization of the standard graph coloring
problem, where x is the number of colors used, and the clusters are supernodes of diameter d.

Graph decomposition problems of this type were first considered by [14, 13, 4], and later by
(7, 1, 10]. Throughout this abstract we use the formulation of Awerbuch et. al. [4], and Linial-Saks
[10], because of its elegant combinatorial structure; an algorithm for this type of decomposition
can be transformed into an algorithm which produces an Awerbuch-Peleg coarsening partition (as
defined in [7]), which is the useful formulation of the decomposition for many of the applications.



Awerbuch and Peleg’s many applications include the construction of spanners and tree-covers for
a network, routing, and online tracking of mobile users [7].

Awerbuch-Peleg [7] gave the first algorithm for (O(log n), O(log n))-decomposition, and Linial-
Saks [10] further proved that this is the optimal decomposition, i.e. there exist graphs for which
this is the best possible (x,d)-decomposition. The Awerbuch-Peleg algorithm was a determinis-
tic (distributed) greedy one, which runs in linear time. Linial-Saks [10] also gave a randomized
distributed (trivially also an RNC) algorithm which runs in O(log® n) time.

1.2 Owur Results

We look at deterministic constructions of (x, d, A)-decompositions. We state our results with A = 1;
however we remark that we can always generalize this to create a buffer zone between clusters as
long as we set the parameters A and d so that d > Q(Alogn).

Our principal result is a deterministic distributed algorithm for the optimal (O(logn), O(logn))-

decomposition of an arbitrary graph in n© (Vicglogn/+/logn) time, which runs on an asynchronous
network. (This is O(n¢) time for any € > 0.)

The previous best known deterministic algorithm for this problem took linear time [7, 10].
Awerbuch et. al. [4] in fact match our time, but get a substantially worse decomposition; namely,

a (no( Vieglogn//iogn) ,no(\’ loglogn/+/logn) ) decomposition. These larger clusters are not nearly as

efficient in exploiting locality in the network.

We then turn to the PRAM model, giving the first deterministic NC algorithm for finding a
(O(log® n), O(log n))-decomposition for an arbitrary graph. Our algorithm runs in O(log’(n)) time,
and uses O(n?) processors. Previously, no NC algorithm for (x, d)-decomposition was known.

We obtain our NC algorithm by derandomizing the RNC algorithm of Linial and Saks. The
hard part is in finding a pairwise independent version of their RNC algorithm. To do this, we need
to modify the distribution and the algorithm to be sensitive to graphs which have non-uniform
densities of nodes within different local regions. Scaling techniques in previous work only took into
account variations in node degree. We, on the other hand, employ a more complicated measure.

It is interesting to note that the Linial-Saks algorithm cannot be shown to work with constant-
wise independence; one can construct graphs for which there will be no good sample point in a
sample space with only constant-wise independence. It even seems doubtful that the Linial-Saks
algorithm would work with polylogarithmic independence.

Saks [15] in fact posed the problem of finding an NC algorithm for the low-diameter decom-
position problem in the context of an important step toward getting a polylogarithmic-time de-
terministic distributed algorithm for this problem. Notice that it is only a first step: when we
derandomize an RNC (and randomized distributed) algorithm to get an NC algorithm, we do not
automatically have a deterministic distributed algorithm. This is because even if we know that a
good sample point exists in a small sample space, we still might not be able to figure out quickly
which point this is; the benefit of a specific sample point might be a global function which we
need to look over all the vertices to compute. This is no trouble in the parallel domain, where all
nodes can communicate in O(1) time, and we can look at a sample point over an entire graph. A
polylogarithmic-time deterministic distributed algorithm for the low-diameter decomposition prob-
lem would give polylogarithmic-time deterministic distributed algorithms for maximal independent
set and (A+1)-coloring [4, 10]. It is perhaps the most important open question in the theory of
distributed computing [10].



Distributed Applications

Consider the problem of all-pairs shortest paths parameterized in terms of A; i.e. we are interested in
looking at all-pairs shortest paths of distance at most A between nodes in an asynchronous network.
One can easily solve this problem with communication complexity O(mn) and time O()); [1] have
communication complexity O(n?logn) and time O(nlogn), where n is the number of nodes in the
entire network. We achieve communication complexity O(n?*¢) and time An¢; thereby improving
the first algorithm in terms of communication complexity, and the second in terms of time. This is
useful for local routing on a distributed network and distributed directories, as well [7]. For other
applications, see Awerbuch-Sipser (8], Afek-Ricklin [1], and Awerbuch-Peleg [7].

2 The Distributed Algorithm

In this section, we introduce the new distributed algorithm, Color, which recursively builds up a
cluster structure. It calls on a procedure, Create-New-Color, which runs a modified version of
the greedy algorithm on separate clusters. First we need to review the sequential greedy algorithm.

2.1 The Sequential Greedy Algorithm

Awerbuch-Peleg [5] present a simple greedy algorithm for getting a (O(log n), O(log n))-decomposition
in linear time. The algorithm colors a constant fraction of the nodes with a single color. Pick a
color. The algorithm picks an arbitrary node, (call it a center node) and greedily grows a ball
around it of minimum radius r, such that a constant fraction of the nodes in the ball lie in the
interior (i.e. are in the ball of radius 7 — 1 around the center node). It is easy to prove that there
always exists an 7 < logn for which this condition holds. We then put the interior of the ball into
our color class, and the entire ball is removed from our graph. (The border (those nodes whose
distance from the center node is exactly r) will not be colored with the current color). Then we pick
another arbitrary node, and do the same thing, until all nodes in the graph have been processed.
We then return all the uncolored nodes (the border nodes) to the graph, and begin again on a new
color.

2.2 The New Distributed Algorithm

In this section, we give a new recursive deterministic distributed algorithm for obtaining a (log n,log n)-

decomposition!, which runs in n0(Vicglogn/+/logn) time in the asynchronous model. We note that
the algorithm given can be trivially modified to get a (logn,tlogn,t)-decomposition.

The algorithm is implicitly taking higher and higher powers of the graph, where we define the
graph G* to be the graph in which an edge is added between any pair of nodes that have a path
of length < ¢ in G. Notice that to implement the graph G* in a distributed network G, since the
only edges in the network are still the edges in the underlying graph G, to look at all our neighbors
in the graph G*, we might have to traverse paths of length ¢. Therefore the time for the graph
G*, blows up by a factor of t. The crucial observation is that a (x,d,1)-decomposition on G* is
a (x,dt,t)-decomposition on G. Choosing t well at the top level of the recursion, guarantees that
nodes in different clusters of the same color are always separated by at least twice the maximum
possible distance of their radii. We can thus use a variant of the sequential greedy algorithm,
described in Subsection 2.1, to in parallel recolor these separate clusters without collisions.

For ease of notation, we leave out the big oh in y, d, and A for the remainder of this paper. We note that we
give the exact constants in our proofs.



In this discussion, recall that all distances between nodes, including those in the same cluster,
are assumed to be weak distances, and the diameters of the clusters are always in terms of the weak
diameter (see Section 1.1).

Algorithm: Color(G)

Input: graph G
Output: a (logn,logn)-decomposition of G

1. Compute G287,
2. If G has less than z nodes, run the sequential greedy algorithm on G?'°8™, and go to step 6.

3. Partition nodes of G into z subsets, Vi, ..., V, (based on the last log z bits of node IDs, which
are then discarded).

4. Define G; to be the subgraph of G2?'°8" induced on V;.

5. In parallel, for 7, Color(G;).
(every node of G is now colored recursively)

6. For each v € V, color v with the color <z, color(v) € G;>.
(this gives an zlogn coloring of G with separation 2logn)

7. Do sequentially, for ¢ = 1 to logn, Create-New-Color(G, 1)
(this gives a logn coloring of G with separation 1)

We now present the procedure Create-New-Color.

Algorithm: Create-New-Color(G, 1)
(this colors a constant fraction of the old-colored nodes remaining with new color i)

Input: graph G with new and old colored nodes such that there is a (zlogn,4log® n,2logn)-
decomposition on the old-colored nodes of G and a (i — 1,2logn, 1)-decomposition on the new-
colored nodes of G

Output: graph G with new and old colored nodes such that there is a (zlogn,4log® n,2log n)-
decomposition on the old-colored nodes of G and a (i,2logn, 1)-decomposition on the new-colored
nodes of G

1. Do sequentially, for j = 1 to zlogn,
“Look at nodes with old color j”:

(a) Do in parallel for color j clusters,

e Elect a leader for each cluster.

¢ The leader learns the identities of all old-colored nodes within logn distance from
its cluster.

o The leader runs a variant of the simple greedy algorithm as follows: the centers of
the balls grown out are always picked (arbitrarily) from the nodes in the old-color
J cluster; but the interiors and borders of the balls which are then claimed, include
any of the old-colored nodes (not just those of color j) within the ball. As before,
the leader colors the interior of the balls with new color i, and considers the entire
ball removed from the graph. The leader continues until all nodes of old-color 5 in
the graph have been processed.



2. Re-introduce all removed nodes.
Lemma 2.1 If z = 2V'°8nVI8log 4he rynning time of Color is 0 (Vicglogn/+/logn)

Proof The running time blows up in recursive levels. In particular, the factor of blowup is
(2logn)f, for the Lth level. Since L is at most (logn)/(logz), the maximum blowup we get is
(2logn)Uoen)/(%€=) Gince we use z log® n neighbor to neighbor time to communicate in the current
graph we're dealing with, we get a running time of at most (zlog®n)(2logn)(e8n)/(og2)  If we
choose & = 2V/1°8»VIo€16n e oot the running time bounded by 20(v18nV/1%81°87) which i exactly
W o

Theorem 2.2 There is a deterministic distributed asynchronous algorithm which given a graph
G = (V, E), finds a (logn,log n)-decomposition in n®(Vicglogn/ fiogn) 45,

3 Decomposing a Graph into Regions of Low-Diameter is in NC

Here we present the first deterministic NC algorithm for finding a low-diameter decomposition
problem. We achieve this by modifying an RNC algorithm of Linial-Saks to depend only on pairwise
independence, and then remove the randomness. To get our newly-devised pairwise independent
benefit function to work, we had to employ a non-trivial scaling technique. Scaling has been used
previously only on the simple measure of node degree in a graph.

3.1 The ERNC Algorithm of Linial-Saks

To simulate the greedy algorithm randomly, Linial-Saks [10] still consider each of the O(logn)
colors sequentially, but must find a distribution that will allow all center nodes of clusters of the
same color to grow out in parallel, while minimizing collisions. If all nodes are allowed to greedily
grow out at once, there is no obvious criterion for deciding which nodes should be placed in the
color-class in such a way that the resulting coloring is guaranteed both to have small weak diameter
and to contain a substantial fraction of the nodes.

Linial-Saks give a randomized distributed (trivially also an RNC) algorithm where nodes com-
pete to be the center node. In their algorithm, they select which nodes will be given color j as
follows: Each node flips a candidate radius n-wise independently at random according to a trun-
cated geometric distribution (the radius is never set greater than B; where we explain how they
set B, below). It is assumed that each node has a unique ID associated with it. Each node y then
broadcasts the triple (r,, I.D,,d(y, z)) to all nodes z within distance ry of y. For the remainder of
the abstract d(z, y) will always denote the weak distance between a z and y. Now each node z elects
its center node, C(z), to be the node of highest ID whose broadcast it received. If r, > d(z,y),
then z joins the current color class; if 7, = d(z,y), then z remains uncolored until the next phase.

Linial and Saks show that if two neighboring nodes were both given color 7, then they both
declared the same node y to be their winning center node. This bounds the diameter of the
resulting clusters by 2B. They then show they can set B = O(logn) so that they can expect to
color a constant fraction of the remaining nodes at each phase. So their algorithm uses O(logn)
colors. (See their paper [10] for a discussion of trade-offs between diameter and number of colors;
in [10], Linial-Saks also give a family of graphs for which these trade-offs between x and d are the
best possible.)

The analysis of the above algorithm cannot be shown to work with constant-wise independence;
in fact, one can construct graphs for which there will be no good sample point in a sample space
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with only constant-wise independence. It even seems doubtful that the Linial-Saks algorithm above
would work with polylogarithmic independence. So if we want to remove randomness, we need to
alter the randomized algorithm of Linial-Saks.

3.2 A Pairwise Independent RNC Algorithm

Surprisingly, we show that there is an alternative RNC algorithm where each node still flips a
candidate radii and competes to be the center of a cluster, whose analysis can be shown to depend
only on pairwise independence.

3.2.1 The Algorithm

The algorithm will use O(log” n) colors: one for each of the O(logn) phases of O(log n) iterations
each. At the end of each iteration, nodes assigned the corresponding color are eliminated from the
graph. We are able to show that our algorithm colors a constant fraction of the remaining nodes
in each phase. The phases are designed to mimic the RNC algorithm of Linial and Saks [10]. We
need the more complicated iterations inside each phase to be able to get the algorithm to work
with pairwise independence. We need to change the distribution over each iteration to capture
nodes in successively sparser regions of the graph. Our last iteration in each phase is identical to
running one phase of Linial and Saks, on the remaining graph that has not yet been colored by our
algorithm.

Define Ty, = 3°, 4. ,) <« 5 P°*), and A = maxyyee Ty. Each phase will have O(log n) iterations,
wherein each iteration, ¢, colors a constant fraction of the nodes y with 7, between A/2*! and
A/2. Note that T, decreases from iteration to iteration, but A is fixed.

The algorithm for each iteration i of a phase is as follows. Let z = 2{/(5A). First each
node y selects an integer radius r, pairwise independently at random according to the distribution
that follows. It is a scaled truncated geometric distribution (as opposed to the simple truncated
geometric distribution of Linial-Saks), which is defined in terms of three parameters, p, B, and z.
Since z is increased throughout a phase, and then reset at the beginning of the next phase, our

new distribution varies dynamically. For y = 1,...,n:
Prir,=NIL] = 1-2
Prir, = 7] = zpf(l—-p) for0<j<B-1
Prlr, = B] = zpB

We can assume every node has a unique ID [10]. Each node y broadcasts (r,,ID,) to all nodes
that are within distance r, of it. After collecting all such messages from other nodes, each node
y selects the node C(y) of highest ID from among the nodes whose broadcast it received in the
first round (including itself), and gets the current color if d(y,C(y)) < r¢(y). (A NIL node doesn’t
broadcast.) At the end of the iteration, all the nodes colored are removed from the graph.

3.2.2 Analysis of the Algorithm’s Performance

We fix a node y and estimate the probability that it is assigned to a color, §. Linial and Saks
[10] have lower bounded this probability for their algorithm’s phases by summing over all possible
winners of y, and essentially calculating the probability that a given winner captures y and no other
winners of higher ID capture y. Since the probability that y € § can be expressed as a union of
probabilities, we are able to lower bound this union by the first two terms of the inclusion /exclusion
expansion as follows:



PrlyeS]> (P?“[Tz >d(z,y)]l = 3. Pri(r. > d(zy)A(ru 2 d(u,y))])

z|d(z,y) < B u > z|d(v,y) < B

We note that the Linial and Saks algorithm cannot be shown to work with this lower bound.
For a given node z, define the following two indicator variables:
Xy 12 2d(2,9)
Zys: 1, >d(z,y)
Then we can rewrite our lower bound on Pry € S] as

Z E[Zy,z] - Z E[Zy,sz,u]

z|d(z,y) < B u>z| d(zy
d(u,y
It will be convenient for us to define the benefit [9, 12] of a sample point R =<ry,...,r,> for

a single node y, as
By(R) = Z Zy,: — Z Zy: Xyu

zld(z,y) < B u > z| d(z,y) < B
d(u,y) < B

Hence, our lower bound on Pr[y € §] is, by linearity of expectation, the expected benefit.
Recall that T, =3~ .. ,) < 5 PP,

Lemma 3.1 Ifp < 1/2, then E[B,(R)] > pzT, — pz*(T}/2).

froctoimce B, | = zp?®¥), and E[Z,.]= zp?CG¥)+ we can rewrite
E[By(R)] = pzT, — P-’v"z Z p"(z,y)+d(u,y)

It thus remains to show that

T2
7!' > Z pd{zny)'i’d(ﬂxﬂ) (1)
u > z| d(z,y) < B
d(u,y) < B
We proceed as follows:
2
5 = _1.. Z p2d(zly) + 2 Z pd(zlsy)+d(z2=y)
2 2 zld(z,¥y) < B 21 < 22| j((ﬂ.y%(;
22, ¥) <
1
=5 X peny ) P+ _ ) plC)+B
z|d(z,y) < B u>z| diz,y)<B u>z| d(z,y)<B
dwy) < B d(u,y)= B

Since the middle term is exactly the right hand side of inequality 1, it remains only to show that
the difference of the first and last terms is positive. We have, if d(z,y) < B, then 2d(z,y) <
d(z,y)+ B — 1. Therefore

1

s Z p2d(z,y) 1 Z pd(z,y)-l-B—l

zld(z,y) < B zld(z,y) < B

T )+B

1
2 iim <

v



and for p < 1/2, since conditioning a sum further can only decrease the number of terms, we get

1 TN s Y peaes

zld(z,y) < B uld(u,y) = B,
zld(z,y) < B

We define the set D; at the ¢th iteration of a phase as follows:
D; = {y|A/2T < T, < A/2' A (y ¢ D), for all h < i)}

It is clear from the definition that each y can be in at most one set D;, in the proof of Lemma 3.3

we will argue that every y falls into D; for some iteration ¢ as well. The sets D;, dynamically

constructed over the iterations of a phase, therefore form a partition of the nodes of the graph.
Given a sample point R =<ry,...,r,>, define the benefit of the ith iteration of a phase as:

Bi(R) = 3 B,(R). @

Recall that A = maxyyeg Ty, and at the ith iteration of a phase, z = 2//(5A). In the analysis
that follows, we show that we expect to color a constant fraction of the nodes which have y € D;
in the ith iteration.

Lemma 3.2 In the ith iteration, we ezpect to color 2p/25 of those y € D;.
Proof

El#ofye S|D;] = Z Prly € 5]

yED;
> E[Bz(R)]
> L
> —T, — -
= y%?M y p(25A2) 2

by Lemma 3.1. Since we want a lower bound, we substitute o
1= % in the negative term, giving

£ in the positive term and

1 1
E fyesS bl = i o
[#ofyeS|yeD] > E.pm P
yeD;
2
= D,
25pl il

a

The next lemma gives us that the expected number of phases is O((logn)/(log(2p/25))) =
O(logn).

Lemma 3.3 Suppose V' C 'V is the set of nodes present in the graph at the beginning of a phase.
After log(5A) iterations of a phase, the expected number of nodes colored is (2p/25)|V"|.

Proof Since for all y, T, > 1, over all iterations, and since z — 1, then there must exist an iteration
where 2T, > 1/10. Since T, can not increase (it can only decrease if we color and remove nodes in
previous iterations), and 2T, < 1/5 in the first iteration for all y, we know that for each y there
exists an iteration in which 1/5 > 2T, > 1/10. If 1 is the first such iteration for a given vertex y,

8



then by definition y € D;, and the sets D; form a partition of all the vertices in the graph. By
Lemma 3.2, we expect to color 2p/25 of the vertices in D; at every iteration ¢, and every vertex is

in exactly one set D;, so we expect to color a (2p/25) fraction overall.
a

It remains to set B so that we can determine the maximum weak diameter of our clusters, which
also influences the running time of the algorithm. By Lemma 3.3, we have that the probability of
a node being colored in a phase is 2p/25. Thus, the probability that there is some node which has
not been assigned a color in the first / phases is at most n(1 — (2p/25))". By selecting B to be
ﬂ’-s,zpﬂ@ it is easily verified that this quantity is o(1).

Theorem 3.4 There is a pairwise independent RNC algorithm which given a graph G = (V, E),
finds a (1og n,log n)-decomposition in O(log n) time, using a linear number of processors.

Remark: The distribution used by the RNC algorithm can be modified so that the algorithm
finds a (log” n,tlogn,t)-decomposition, for any integer t.

3.2.3 The Pairwise Independent Distribution

We have shown that we expect our RNC algorithm color the entire graph with O(log”n) colors,
and the analysis depends on pairwise independence. We now show how to construct a pairwise
independent sample space which obeys the truncated geometric distribution. We construct a sample
space in which the r; are pairwise independent and where for: = 1,...,n:

Priry=NIL] = 1-z
Prr; = §] = zp(l—-p) for0<j;j<B-1
Prir;= Bj = apP

Without loss of generality, let p and z be powers of 2. Let r = Blog(1/p) + log(1/z). Note
that since B = O(logn), we have that r = O(logn). In order to construct the sample space, we
choose W € Z!, where | = r(logn + 1), uniformly at random. Let W =<w®™, w® . . w()> each
of (logn + 1) bits long, and we define w( “) to be the jth bit of w(®).

For:=1,...,n, define random varla.ble Y; € Z} such that its kth bit is set as

Y;x =<bin(i), 1> -w®),
where bin(i) is the (log n)-bit binary expansion of i.

We now use the ¥;’s to set the 7; so that they have the desired property. Let ¢ be the most
significant bit position in which Y; contains a 0. Set

r; = NIL iftell,.,log(1/z)]
= j  ifte(log(1/z)+ j1og(1/p),...log(1/z)+ (j + 1)log(1/p)], for 0< j < B 1
= B otherwise.

It should be clear that the values of the 7;’s have the right probability distribution; however,
we do need to argue that the r;’s are pairwise independent. It is easy to see [9, 12] that, for all &,
the kth bits of all the ¥;’s are pairwise independent if w*) is generated randomly; and thus the ¥;’s
are pairwise independent. As a consequence, the r;’s are pairwise independent as well.

3.3 Our NC Algorithm

We want to search the sample space given in the previous section to remove the randomness from
the pairwise independent RNC algorithm; i.e. to find a setting of the r,’s in the ith iteration of a
phase for which the benefit, Br(R), is at least as large as the expected benefit, E[Bz(R)].



Since our sample space is generated from r (logn)-bit strings, it thus is of size 27l8» <
O(n'°8"), which is clearly too large to search exhaustively. We could however devise a quadratic
size sample space which would give us pairwise independent r,’s with the right property (see
[9, 11, 2]). Unfortunately, this approach would require O(n®) processors: the benefit function must
be evaluated on O(n?) different processors simultaneously.

Alternatively, we will use a variant of a method of Luby [12] to binary search a pairwise inde-
pendent distribution for a good sample point. We can in fact naively apply this method because
our benefit function is a sum of terms depending on one or two variables each; i.e.

BI(R) = E By(R) = Z z Z,z - 2 Zy,sz,u ’ (3)

yeD; yED; | zld(z, )< B u>z|  dz,y)

where recall D; = {y|A/2+' < T, < A/2 A (y € Dy forall h < i)}. The binary search is
over the bits of W (see Section 3.2.3): at the gt-th step of the binary search, w(® is set to 0 if
E[Bz(R) | wgl) = bu,wgl) = bu,...,wEQ) = bg], with b, = 0 is greater than with b, = 1; and 1
otherwise. The naive approach would yield an O(n®) processor NC algorithm, since we require one
processor for each term of the benefit function, expanded as a sum of functions depending on one
or two variables each.

The reason the benefit function has too many terms is that it includes sums over pairs of random
variables. Luby gets around this problem by computing conditional expectations on terms of the
form 37, ;s Xi X directly, using O(|S|) processors. We are able to put our benefit function into a
form where we can apply a similar trick. (In our case, we will also have to deal with a “weighted”
version, but Luby’s trick easily extends to this case.)

The crucial observation is that, by definition of Z, , and X, ,, we can equivalently write E s gl
as pE[X, . X, .]; thus, the algorithm will perform within at least a multiplicative factor of p of its
performance in Lemmas 3.2 and 3.3, if we upper bound the latter ezpectation.

It will be essential throughout the discussion below to be familiar with the notation used for
the distribution in Section 3.2.3. Notice that our indicator variables have the following meaning:

Xy,z = }/z,k =1 forall ks 1<k < d(z7 y)log(l/p)
Zy, = Z;p=1 forall k,1 <k < (d(z,y)+1)log(1/p)

If we fix the outer summation of the expected benefit at some y, then the problem now remaining
is to show how to compute

E[ Z Xy,sz,u l wgl)zl’nawgi):bm---,wgq):bga]; (4)
(2,u)ES

in O(logn) time using O(|S|) processors. For notational convenience, we write (z,u) for z # u.
Below, we assume all expectations are conditioned on w?) =by,.. .,wg‘” =by.

Note that we only need be interested in the case where both random variables X, .and X, , are
undetermined. If ¢ > d(4,y)log(1/p), then X, ; is determined. So we assume ¢ < d(i,y)log(1/p)
for i = z,u. Also, note that we know the exact value of the first ¢ — 1 bits of each Y,. Thus, we
need only consider those indices z € § in Equation 4 with Y.; = 1forall j < g—1; otherwise, the
terms zero out. Let 5 C 5 be this set of indices.

In addition, the remaining bits of each Y, are independently set. Consequently,

El Y XX, = E[ Y vz yn(w,y)Y.,Ya,] = E[(3 1(=9)Y. )" = > 1z 9)Y2 ),

(z,u)es’ (z,u)es’ z2€S! z€S!
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where y(z,y) = 1/2d(z,y)log(1/p)—q

Observe that we have set # bits of w(9). If t = logn + 1, then we know all the ¥, ,’s, and we can
directly compute the last expectation in the equation above. Otherwise, we partition S’ into sets
Se ={2€ 8"| 2zt41°+ 2logn = a}. We further partition each S, into Seo={2€ S| i, z.-wf“) =
0 (mod 2)} and S,; = Sy — Sa0. Note that given wgl)zbn, .. .,wE”:bq,,

1l PrlY,,=0]= Pr[Y,,=1]=1/2,
2.if2€ 8,j,andu€ §,;:,then Y, , =Y, , iff j = 5/, and
3. if z € S and 2’ € So, where @ # o, then Pr[Y, , =Y, ,]= Pr[Y,, # Y, ] =1/2.

Therefore, conditioned on w{=b,,,... w0 =

E[ Y Xy.X,.

(z,u)es’
= E[ X 1(zy(u,y)Ys, Y,
(z,u)€S’
= ER. D 1@ yn(wy)YaYuo+ D 3 D (06,9, Y]
o (z,u)€Sa (a,a’) 2ES4 uES s
= D2 E[ Y 1@y y)Ye Yo+ Y v(murw )Y Yo +2 30 S ()11 9)Y Ve ]
] (z,u)€S4,0 (z,u)€84,1 ZESa,0 UESa,1

Y EY Y Aoyt

(a,a’) 2€S54 UES

= > [% 2 7(2,y)7(u,y)+% b3 7(z,y)"f(u,y)+0J £, % > 7(2,3/)) (Z 7(%31))

o (2,u)€Sa,0 (2,4)€5a,1 (a,a’) UES,

- %Z (E 7(Z=y)) - 2 1@ ( > ’r(zay)) - 2 Azy)’

o ZE€ES40 2€84,0 2€Sa 1 ZESa

a 2ESa a 2€Sqa

+% [(Z > v(z,y))z -2 (Z ’Y(Zvy)ﬂ :

Since every node z € §' is in precisely four sums, we can compute this using O(|S|) processors.

In the above analysis, we fixed the outer sum of the expected benefit at some y. To compute
the benefit at iteration ¢, we need to sum the benefits of all y € D;. However, we argued in the
proof of Lemma 3.3 that the sets D; form a partition of the vertices. Therefore we consider each y
exactly once over all iterations of a phase, and so our algorithm needs only O(n?) processors, and
we obtain the following theorem.

Theorem 3.5 There is an NC algorithm which given a graph G = (V, E), finds a (log® n,log n)-
decomposition in O(log® n) time, using O(n?) processors.
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