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Abstract

We report recent developments in the modeling of fluid dynamics, and give experimental resnits (inclnding

dynamical exponents) obtained using cellular automata machines. Because of their localily and uniformity, cellndar
automata lend themselves:to an extremely efficient physical realization; with a suitable architecture, s anwouub of
hardware resources comparable to-that of a home computer can achieve (in the simulation of cellular antomata) the

performance of a conventional supercomputer.

1 Introduction

A cellular automaton is a discrete dynamical system
consisting of finite-state variables, or cells, arranged
on a uniform grid. The overall dynamics is specified
by a finite rule, by which at every time-step each cell
computes its new state from the current state of its
neighborhood.

Surprisingly enough, cellular automata can faith-
fully model continuum systems such as fluids; unlike
differential equations, they can be realized exactly by
digital hardware.

Modeling with cellular autoihata is poorly sup-
ported by conventional scientific computers, whose ar-
chitecture is optimized for the arithmetic treatment of
continuum models. With a more appropriate archi-
tecture one can easily gain a performance factor of at
least 10,000 in the simulation of cellular automata; this
gain is of such magnitude that new classes of concep-
tual models have become computationally accessible.

The idea of using discrete lattices for modeling
physical phenomena is not new. However, recent the-
oretical and technological developments have turned
models based specifically on cellular automata into
practical computational tools. On one hand, meth-
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ods have been found for constructing cellular automata
that are microscopically reversible (and thus support
a realistic thermodynamics), obey exact conservation
laws, and model continuum phenomena(l-10]. On
the other hand, general-purpose machines well-suited
to such fine-grained modeling are becoming generally
available (see Appendix).

2 Hydrodynamic modeling

Differential equations such as the Navier-Stokes equa-
tion capture important macroscopic aspects of fluid
dynamics; however, what one implements on a digi-
tal coniputer is not the equation itsell, hul a finitary
model obtained from it by truncation and rouwnd-off.

It is possible to arrive at an analogous jmacrody-
namics starting directly from a discrete microscopic
model—a cellular-automaton idealization of the me-
tion and collisions of individual particles. Models of
this kind can give rise to the Navier-Stokes equation
in the macroscopic limit[9], as had heen indicated as
early as 1973 by Pomeau and coworkers[1,2] in a theo-
retical analysis of a lattice gas model (hereafter, HPP
gas).

Frames (a), (b), and (c) of Fig. 1 are taken directly
from the display screen of CAM-6[12], a cellular au-
tomata machine. They show the evolution of an TP
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Figure 1: Wave propagation in the HPP gas. To enhance contrast, only sites that contain either 3 or 4 particles are shown.

gas consisting of 2'° sites (256 x256) each of which can
hold up to four particles (one traveling in each of four
allowed directions). The evolution rule is simply that
particles travel straight at unit velocity (one cell per
time-step) unless exactly two particles collide head-on,
in which case they scatter at right angles.

The initial state (a) was constructed with a bit-
occupancy of 50% except in the middle, where we have
a block of 4096 particles (100% occupancy in an area
of 32x32 sites). Thus, the simulation involves about
130,000 particles. Frames (b) and (c) show the state
after 30 and 90 steps—0.5 and 1.5 seconds at CAM’s
rate of 60 frame-updates/sec. Despite the fact that
particles travel in only four directions the wave is cir-
cular, and moves at a speed that agrees with the the-
oretically predicted|2] value of 1/1/2.

The HPP rule is exactly reversible. To go back
in time from frame (c) one need only transform the
state of every cell so as to interchange the UP and
DOWN particle information, and similarly for RIGHT
and LEFT. If one then proceeds with the same rule
the simulation will retrace its steps back to (a).

Boundary conditions such as sources, sinks, and
obstacles of any shape are introduced by using addi-
tional bits of state at each site to mark selected areas,
and extending the rule so as to take the values of these
bits into account[10].

3 Time correlation functions

We have measured the time autocorrelation [unction
for velocity at a given site
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where C is an initial configuration, ¢ is the transition
rule (such as HPP), a},C has a value of 1 or 0 depend-
ing on whether or not there is a particle moving in the
g direction at the (¢7) site in the confignration C, a
is the average particle occupancy (per site) for each
direction, and there is an implied summation over all
N sites and all Q allowed directions.

The actual correlation experiments were performed
using a cellular-automata realization of the HPP
rule[13] that spreads each site over four one-bit
cells[4,10]. Figure 2(a) shows the measured values of
v(t) for the HPP model, using T=2'" and a density
of a=1/4. Finite-size ellects show up past (=256 (the
space is 256x256 and has periodic boundary condi-
tions), but already before that point the predicted|14]
asymptotic exponent of —2/3 is attained within +£3%.
The same exponent was obtained for a=1/6, a=1/8.

The exponent —2/3, which is characteristic of one-
dimensional gases|14|, arises from extra conservations
(momentum on each row and columm). The “TM”
gas(10,11]—a similar model which also uses only four
directions—avoids these extra conservations by hav-
ing collisions occur with a nonzero impact paranie-
ter (resulting in right-angle scattering from two ad-
jacent rows to two adjacent columns, or vice versa).
This gas is shown in Fig. 2(b), using the same den-
sity @ as for HPP but (to improve the statistics) using
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Figure 2: Time correlation function, v(t), for the HPP gas (a),
the TM gas (b), and the FHP gas (c); 3=1/4 in all cases.

T=2'%; note that the asymptotic exponent for this gas
is close to —1, characteristic of a true two-dimensional
gas (v~t~%2 for d>2)[15]. The same exponent was
obtained for a=1/6, a=1/8.

As is noted in [9], a shadow of the 7/2 rota-
tional symmetry persists in the macroscopic behavior
of the, HPP gas (and possibly also in TM). A more
refined hydrodynamical model (the “FHP gas”(9,16]),
which uses a hexagonal grid, avoids this problem([17].
Fig. 2(c) shows the behavior of v(t) for this gas,
using T=2'7 and again using the density a=1/4.
The asymptotic exponent appears to be close to —2,
which is surprisingly large and calls for a theoreti-
cal explanation—the same exponent was obtained for
a=1/6,a=1/8. As above, this experiment used an im-
plementation in which collision sites are spread out—in
this case over four two-bit cells|10].

4 Hardware

A machine such as CAM-6 uses an amount of digi-
tal logic comparable to that of a home computer and
achieves, in the simulation of cellular automata, a
performance comparable to that of a CRAY-1; sev-
eral modules can be ganged together—with a pro-
portionate increase in performance—for larger two-
dimensional arrays or for three-dimensional simula-

tions.

To achieve maximum speed, the rule is internally
stored as a look-up table. The rule as written by the
user consists of a few lines describing in a high-level
language how the new value of a cell depends on the
current value of its neighbors. The problem of trans-
lating such a description into an appropriate look-up
table is taken care of by the machine’s designers; since
the efficiency of this compilation process in no way al-
fects the speed of the simulation, one’s full attention
can be kept on conceptual issues.

The above performance is achieved with a dedi-
cated architecture but conventional circuitry and com-
ponents. In this architecture two-dimensional planes
are processed serially (with a substantial amount of
pipelining); a third dimension is achieved by stacking
planes and operating them in parallel[18]|. Since sites
in each plane are updated one by one, and correspond-
ing sites in adjacent planes are handled at the same
time in a “lockstep” fashion, communication between
planes entails a few wires rather than the millions of
physical interconnections required by a fully-parallel
implementation. This approach makes extensive sim-
ulation of three-dimensional models of hydrodynamics
immediately practical.

One may simultaneously run (on different planes of
the same machine) two copies of the same system that
are identical except for a given spatial or temporal off-
set between them. Since sites are processed serially,
correlations between corresponding sites are easily de-
tected and accumulated “on the fly,” thus eliminating
the need for storage- and computation-intensive post-
processing. This is, in fact, how the time correlation
experiments presented in this paper were conducted.

5 Conclusions

Cellular automata machines are well suited to a large
class of computational models of physics having both
theoretical and practical interest. The performance
they offer provides strong encouragement for the de-
velopment of models of this kind; conversely, the use-
fulness of these models will stimmulate technology to
provide further performance in this direction.
Because of the speed-of-light construint, locality
of interconnection is an important advantage of the
cellular-automaton paradigm. A fully-parallel im-
plementation of specific two-dimensional cellular au-
tomata having 10'? sites and an update cycle of 100




picoseconds for the whole array will be feasible in one
decade and within easy reach in two; one using 10*¢
sites (the Avogadro number “in two dimensions”) is
not inconceivable. Thus, we can look forward to com-
putational tools that directly span the gap between
the microscopic and the macroscopic world.

Appendix

CAM-6[12] is derived from CAM-5, a general-purpose
cellular automata machine[19,20,21] designed at the
MIT Laboratory for Computer Science. CAM-7, a
much larger version, is under development[18]; the ba-~
sic module of this machine (1/4 billion sites, 10 bil-
lion site-updates per second) will be capable of three-
dimensional simulations (a 512x512x512 cube) or
much larger two-dimensional simulations (16 Kx 16K).

The Connection Machine[22] and other heavily par-
allel architectures can be adapted to perform usefully
in some cellular automata contexts[23].
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