MIT/LCS/TM-260

RSA/RABIN LEAST SIGNIFICANT BITS

1

ARE "3 = SECURE

2 poly(log N)

Benny Chor
QOded Goldreich

May 1984

RSA/Rabin least significant bits
are j + —1L— Secure

poly(log N)

Benny Chor * Oded Goldreich **

Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

May 10, 1984

Abstract —- We prove that RSA least significant bit is § + T«ZIL“W secure, for any constant ¢ (where
N is the RSA modulus). This means that an adversary, given the ciphertext, cannot guess the
least significant bit of the plaintext with probability better than § + @+N, unless he can break

RSA.

Our proof technique is strong enough to give, with slight modifications, the following related
results:

(1) The loglog N least significant bits are simultancously % + 1_@_16_“?\? secure.
(2) The above also holds for Rabin’s encryption function.

Our results imply that Rabin/RSA encryption can be directly used for psecudo random bits
generation, provided that factoring/inverting RSA is hard.

Keywords: Cryptography, Public Key Cryptosystems, Security of Partial Information, RSA
Scheme, Factoring Integers, Pseudo-Random Bit Generators, Probabilistic Encryption, Predicate
Reductions.

* Rcs_carch supported in part by the National Science Foundation under Grant MCS-8006938.

*" Research supported in part by a Weizmann Postdoctoral Fellowship.

1

1. Introduction

Given a sccure publie key cryptosystem [5], it is hard to recover the plaintext = from its
eneryption, I5(z). However, this does not necessarily mean that a eryptanalyst cannot gain some
partial information about z without actually computing it. The ability to derive partial informa-
tion can render a cryplosystem uscless in specific applications (e.g. mental poker [17],[12],[10]).
For example, even a moderate ability of guessing the least significant bit of the plaintext may be

ple, g & &

a threal lo security.

In the current state of knowledge we are unable to prove even the existence of secure public
key cryptlosystems. lowever, under reasonable assumptions on the computational complexity
of certain problems, secure public key eryptosystems do exist and can be explicitly constructed.
One of the most fascinating questions regarding those systems is “what partial information ebout
the plaintezt 1s hard to extract from the ciphertert?”

This question was rigorously defined and studied, with respect to probabilistic encryption, by
Goldwasser and Micali [10]. They constructed a public key cryptosystem which leaks no partial
information. However, their system encrypts messages by expanding each plaintext bit into a
ciphertext block, making it undesirable from a practical point of view.

The RSA [15] is the most widely known public key cryptosystem, and probably the first one
which will be used in practice. It has been an open problem to demonstrate a predicate, P(-),
such that having any advantage in guessing P(z) given the encryption of z, is as hard as inverting
RSA. ‘

In this paper, we show that RSA least significant bit is % + ¢ secure for any polynomial
fraction ¢ (¢! = O(log®N)), where N is the RSA modulus. With a small modification, our
proof technique also allows us to show that loglog N of RSA bits are simultaneously %+]og+N
secure. Le., il RSA is indeed secure, then no heuristic which runs in polynomial time can get
information about any function of these plaintext bits, given the ciphertext. Hence these bits
provide instances of secure partial information for RSA.

Our results have important implications for generating sequences of cryptographically strong
pseudo-random bits. RSA encryption E can be directly used for generating such sequences by
starting from a random seed s and iterating E on it.

Slightly modifying our proof techniques, we also prove the same strong bit security for Rabin
public key scheme [14]. This implies a fast and “direct” pseudo-random bits gencrator which
is as hard to crack (distinguish its outputs from truly random strings) as factoring. Important
consequences follow also w.r.t the probabilistic encryption scheme of Goldwasser & Micali [10]
(see section 8.2).

Organization of the paper : In section 2 we formally define the question of security for
RSA least significant bit and cover previously known results. In section 3 we sketch the proof of
Ben-Or, Chor & Shamir result, and in section 4 - ils improvement by Schnorr & Alexi. These two
investigations are the basis for our work, which is described in seetion 5. Section 6 extends our
proof to other RSA bits and section 7 - to bits in Rabin’s scheme. Section 8 contains concluding
remarks on the applications of our results for the direct construction of pscudo-random bit
generators and probabilistic encryption schemes.

2

2. Problem definition and Previous Results

The RSA encryption function is operating in the message space Zpn, where N = pq is the
product of two large primes (which are kept seeret). The encryption of z is I/n(z) = z¢ (mod N),
where ¢ is relatively prime to o(N) = (p—1)(g — 1}. For 0 < = < N, L(z) denotes the least
significant bit in the binary representation of .

Let On be an oracle which, given En(z), outpuls a guess for L(z) (this guess might depend
on a random coin used by Opn). Let p(N) be a function from integers into the interval [%, 1].
We say that Oy is a p(N)-oracle il the probability that the oracle is correct, given En(z) as its
input, is p(N) (the probability space is that of all x € Z,, with uniform distribution and -if Oy
uses a random coin- also of all 0 — 1 sequences of coin tosses with uniform distribution).

We say that RSA least significant bit is p(/N)-secure if there is a probabilistic polynomial
time algorithm which inverts I/, using queries ol any p(N)-oracle On. Since an unbiased coin
can be used as an %—omclc, the best possible security result ean be 13 + ¢ security for any ¢! =
poly(logN) (3 security means RSA is breakable). These notions originate from Blum & Micali’s
work [4], where they have been stated w.r.t the discrete exponentiation function.

Goldwasser, Micali and Tong [11] showed that the least significant bit is as hard to compute
as inverting the RSA. Furthermore, they showed that it is (1 — ﬁﬁ)-secure.

Ben-Or, Chor and Shamir [1] showed a g + ¢ security (7! = poly(logN')). They presented
an algorithm which inverts the RSA by carrying out a ged calculation on two multiples of the
ciphertext and using any (2 + ¢)-oracle. Sampling the oracle they amplified its % + ¢ advantage
to “almost certainty”, for a polynomial fraction of the massage space.

Vazirani and Vazirani [18] improved the result using a novel oracle-sampling technique. They
proved that their modification is guaranteed to succeed when given access to any 0.732-oracle.

Goldreich [7] used a better combinatorial analysis to show that the Vazirani & Vazirani
modification inverts even when given access to a 0.725-oracle. He also pointed out some limitations
of the Vazirani & Vazirani and similar proof techniques.

Schrorr and Alexi [16] introduced a conceptual change in the way the oracle is used. This
enabled them to greatly improve the result showing that the least significant bit is (1 + ¢)-secure

for any constant ¢ > 0. Their result still leaves a gap towards the optimal 1 + security.

relslog]
3. A Sketch of Ben-Or Chor & Shamir Algorithmic Procedure

The essence of the Inverting Algorithm:

Given an encrypted message, En(z), the plaintext z is reconstructed by performing a ged
algorithm on two small multiples of it (small means in the interval [=F¢, ¥¢] (mod N)). A
- special binary variant is used for the ged algorithm. To operate, this variant needs to know the
parity of the absolute value of O(log® N) small multiples of the plaintext. Thus, it is provided

with a subroutine that determines the parity of these multiples.

Determining Parity using an Oracle which may err:

The subroutine determines the parity of a small multiple d = kz, of the plaintext ,Z, by using
an p(N)-oracle for RSA’s Ls.b as follows. It picks a random 7 and asks the oracle for the least
significant bit of both rz and rz + d, by feeding it in turn with En(rz) = En(r)En(z) and
En((r + k)z) = En(r + k)En(z). The oracle’s answers are processed according to the following
observation. Since d = kz is “small”, with very high probability no wrap around 0 occurs when

3

d is added to rz. Then, the parity of |d| is equal to 0 if the least significant bits of rz and rz +d
arc identical; and equal to 1 otherwise. This is repeated many times; every repetition {instance)
is called a d-measurement. Note that the outcome of a d-measurement is correct il the oracle
was correct on both rz and rz + d (the outcome is also correct if the oracle was wrong on both
queries, but this fact is not used in [1]).

(Trivial) Measurement Analysis:

A d-measurement is correct with probability at least 1 —2(1 —p) = 2p — 1.

(This suffices if p = % +c.)

4. A Sketch of Schnorr & Alexi Improvement: % + ¢ for any constant ¢

Schnorr & Alexi [16] improvement is based on trying all possibilities for the least significant
bit of L = 0(loglog N) random, independent positions w; = r;z and using these positions as
“end points” in all measurements for the O(log®N) d’s of the binary ged algorithm. This way
the oracle is queried only about one end-point of each measurement and the error is caused by
single position queries rather than by pairs of positions. This enables the error probability per a
single measurement o be approximately the oracle’s error, rather than twice this magnitude as
in Ben-Or, Chor & Shamir. Using the fact that the L positions are independent, Chernoff bound
implies that the error probability in deciding the parity of d by the majority of d-measurements is

9—((Le?) <]ogl, N (here ¢ is a constant). This guarantees that the accumulated error probability

in deciding the parity of all O(]og2 N) d’s in the modified binary ged algorithm is < %, small

enough to put the algorithm in random polynomial time.
Note that the running time of Schnorr & Alexi’s algorithm is exponential in L. On the other
hand, the probabilistic analysis requires that L = Sl(l—c’g—lc—‘iﬂ). Thus, € can not be replaced by

any function which tends to 0 with N — co.

5. Our Main Result

In this section we prove that RSA least significant bit is % + 1

poly(log N)
Let On be an oracle for RSA least significant bit whose error probability is %— €, where
e ! <log®N.

Instead of picking 0(loglog N) random independent positions, we generate L = 0(log**™® N)

secure.

random positions which are only pairwise independent, such that we know (with very high
probability) the least significant bit of each. As in Schnorr and Alexi’s work, we query the oracle
only about one end-point of each measurement and use the same “decision by majority” idea.
Since the positions are not independent, Chernoff bound cannot be used in our case. However,
since the points are pairwise independent, Chebyshev’s inequality still holds. It gives an O(ﬁ:ﬁ,—)
upper bound on the error probability. With L being so large, this error is sufficiently small.

Generating L “random” positions knowing their least significant bits

We generate L positions by picking two random independent variables ¥,z € Zx and trying
all possibilities for their least significant bits and location in one of the intervals [5%, (1 + 1) %),
0 < i< L. There are (2L3)? possibilities altogether, and exactly one of them is correct. Let
us now assume that we are dealing with the correct choice, i.e. both least significant bit and
approximate magnitude of y, z are known. The positions we’ll look at are w; = y+17z (mod N) for

4

1= 1,2,..., L. Notice that w; is a random clement in Zx with uniform probability distribution.
Since the location of both y and z are known up to %, the location of w; = y + 12z is known
up te % + "fj\} < —%‘N The probability of w; to be within an interval of length ij}’- containing 0
(mod N) is exactly Ll If w; is not in such interval, then its least significant bit is determined
by 7 and the least significant bits of z and y. Therelore we get
e et 2
Pr(least significant bit of w; is unknown) < 77
Determining parity using the generated positions and the oracle
Let d € Zn be any fixed “small” number (one of those generated by the ged procedure). In
order to determine the parity of |d|, we'll query the oracle about all points of the form w; + d,
XOR the answers with the (known) least significant bits ol the corresponding wy, and take the
majority.!Using Chebyshev’s inequality, we'll get a bound for the probability that the majority

of the oracle’s answers will be biased to the wrong direction.

Error analysis :

Suppose d € Z, is any “small” number (in the interval [=5, &¢]). For a random r € Zn,

the probability that a wrap around 0 (mod N) occurs when d is added to 7 is no greater than £.

Hence if |d| is even, the probability that On, on input En(r + d), gives the same answer as the
(true) least significant bit of 7 is at least % +e—§ =%+ £. Similarly, if |d| is odd, then with
probability at least % + 5, On answer to the least significant bit of r + d is different than the

least significant bit of 7. By the above discussion, we get

I]
Pr(w; + d did not wrap around and O is correct on it) > 3 + —; , for every ¢.
Define
N {0 if w; + d did not wrap around and Op is correct on it and w; l.s.b. is known
' 1 otherwise
Hence

Pr(¢; = 0) > Pr(w; + d did not wrap around and Qp is correct on it)

— Pr(w; least significant bit is unknown)

o ge s
N2 2 P
LS 5 8
Therefore, Ezp(¢;) = Pr(¢; =1) < $ — § and

Al nl 1
Var(s) = Exp(s?) — Ezp*(;) = Eap() — Ezp®(¢:) = Ezp(g:)(1 — Ezp(g)) < i

'Notice that this decision procedure is exactly the one employed in Ben-Or, Chor & Shamir. The crucial difference
is that they had to use the oracle’s answer to find w;’s least significant bit, while we know it beforchand (with
overwhelming probability).

Since Fzp(¢;) < § — £, we get

R

We can apply Chebyshev’s inequality (sce Feller [6, p. 219]) and get,
l Al
;’-, Z (gi= f&:cp(gl-]

f’?‘(
=1

e

)

() Var(-}‘- me])

L
1 \
7 Z & — Erp(s)

=1

W | o~

3 (/1

Since y and z are independent random variables and y + iz, y + 7z are linearly independent for
¢ # j, then w; and w; are also independent random variables for any ¢ 5 5. Therefore, for any
i 7 7, ¢; and ¢; are also independent random variables with identical distribution. (Whenever the
same function is applied to two independent random variables, the two results are independent
random variables). Let = ¢;—Ezp(g;). By pairwise independence Ezp(¢-55) = Ezp(5)-Exp(3).
Hence,

1 1
L2 Z ha’p §12) + Z Ezp(G)Ezp(G) | = Iz L- E:z:p(ﬁz) < 1L
i=1 1<is#5<L 7

Thus the probability that 4 }: ey & 2 5 iSSM

(E e) is exactly

the error probability for a single d. We query at most Iog N d’s in the course of the ged
computation and thus the error probability (for one binary ged) is bounded by

log® N - Pr(error for a single d).

Taking L = log2°+3 N, the overall error probability is bounded from above by

4log®? N 4
log? N .- —- < — :
- L = Jogt3 N(log®* N)-1 log N

The running time of the inverting algorithm is
O(e™2L%log® N) = O(log"***** N) = O(c *10g? N).

Hence we can recover the original message in random polynomial time, as desired. This implies
Theorem 1: RSA least significant bit is (3 + b)-secure, for any constant c.

6. Other RSA bits
Our proof technique easily extends to provide strong security results for several other RSA
bits. In particular the following holds:

Theorem 2:

a) Let 1 C [0, N] be an interval of length N /2. The [bit of z is the characteristic function of [
(ie. 1if z € I and 0 otherwise). This bit is (§ + otz)-sccure.

b) Let & = O(loglog N). The k-th bit in the binary expansion of the plaintext is is 4 + T&‘é]—n‘ﬁ
secure. :

¢) Let £ = O(loglog N). The plaintext’s k least significant bits are simultaneously sccure.
Le., even il all least significant bits zx_y,..., 22,2, are given together with En(z), still 24 is
(3 + rogr 7)-sccure.?

d) All bits in the binary expansion of z (except maybe the loglog N most significant ones) are
3+ B_E%W)-sccurc. At least half of them are (1§ + Fglcw]-secure.

Proof sketch :
(a) and (d) follow from Theorem 1, by reductions due to Ben-Or, Chor and Shamir [1].

b) First note that using our proof technique, it is possible to guess all k least significant bits of y
and z. This determines all k least significant bits of each w;,.

Apply the ged procedure to two small multiples of the plaintext, the greatest common divisor
of which is 2%. This way all d’s in the ged calculation will have zeros in all k — 1 least significant
bits. Replace all reference to the least significant bit, in the inverting algorithm (presented in
section 5), by references to the k-th bit. Note that this time we have access to an oracle to the
k-th bit. _

This method of transforming certain inverting algorithms which use an oracle for the 1-st bit into
inverting algorithms which use an oracle for the k-th bit originates from Vazirani and Vazirani
[18].

¢) Going through the proof of Theorem 2(b), notice that when querying the oracle about the -
k-bit of w; + d we can give it the k— 1 previous bits of w; + d. (The latter are equal to the & —1
least significant bits of w;, which we know!)

Vazirani and Vazirani [19] had previously shown that, certain inverting algorithms which use a
p(N) oracle for RSA least significant bit, can be transformed into inverting algorithms which use
a p(IN) oracle for predicting z (given Tk—1y...,21). It turns out that the inverting algorithm
of section 5 falls into the above category; this yields an alternative (but harder) way of proving
Theorem 2(c).

7. Bits equivalent to factoring in Rabin’s encryption function

7.1 Previous Results

The Rabin encryption function is operating in the message space Zx, where N = pq is the
product of two large primes (which are kept secret). The eneryption of z is En(z) = z? (mod N).
The ciphertext space is @ = {y|3z y = 2% (mod N)}. Rabin [14] has shown that extracting
square roots (“inverting £n”) is polynomially equivalent to factoring.

*Equivalently, given E (z) distinguishing between z4---z22; and a randomly selected string of length k is as hard
as inverting the RSA. This equivalence is due to Yao [20].

7

Note that the function /¢ defined above is 4 Lo 1 rather than being 1 to 1 (as is the case in
the RSA). Blum [2] has pointed out that if p = ¢ = 3 (inod 4) then Ey induces a permutation
over Q. These N’s will hereby be called Blum integers. Goldwasser, Micali and Tong [11] have
presented a predicate the evaluation of which is as hard as factoring. Specifically, they showed
that if p = 3 (imod 4) and p = q (mod 8) then factoring N is polynomially reducible to gucssing
their predicate with success probability 1 — —1%.

Ben-Or,Chor and Shamir [1] considered the same predicate. Using a modification of their
RSA techniques they showed % + ¢ security for this predicate. Their modiflication requires that
N be a Blum integer and furthermore that there exists a small odd number I (I = O(log® N))

with (%) = —1. Its correctness proof makes use of non-elementary number theory.

7.2 Our Result

We transform our RSA security result into a similar result for the Rabin encryption function.
Our transformation is simpler than the one used in [1], and its correctness proof is elementary.
Furthermore, it holds for any Blum integer.

Let N beaBluminteger, Sy = {z[0 <z < Jland My ={z|0 <z < & & (&)=1}.
Redefining En for z € My as

2% (mod N) if 2 (mod N) <

~z% (mod N) otherwise

ad

makes En a 1—1 mapping from My onto itsell, without losing the intractability result of Rabin.
Le. factoring N is polynomially reducible to inverting En. Let L(z) be the least significant bit
of z.

The main idea in the reduction (as in the RSA case) is to pick L positions w; € Sy which
are uniformly distributed in Sy and pairwise independent, such that their least significant bits
are known. We want to determine the parity of |d| for small d € Zxn (not necessarily in My) by
querying the oracle with inputs En(w; + d), as in the RSA case. However, if w; + d € My, the
oracle’s answer does not correspond to w; +d (but rather to the square root of (w; +d)? (mod N)
which resides in My).

We solve the above problem as follows: If (%"—é) = —1, then we do not feed the oracle with

(wi + d)?, but flip a coin instead. Once this is done, we can cut the error per a single d just as
we did in the RSA case.

Restricting attention to residues in Sp:

Given En(z), pick y, z € Zn two random multiples of z, with known positions and least significant
bits as before. Let v; = y + 4z (mod N), 1 < ¢ < L. Define

i N
w; = Uy if v < ?
N —wv; otherwise

If w; is not in a QL—IX interval around 0 or —"2!, then the least significant bit of w; is known.

Therefore we get
Pr(least significant bit of w; is unknown) < %)
8

Another modification is to restriet the mpuis to the ged computation to the interval [= NE, Ngﬁ]
instead of restricting them to the interval [=, ‘2] as in the RSA-inverting algorithm. This

will restrict all numbers (i.e. all d’s) in the J(,d caleulation to be in [_SNE, % . Doing this, the

probability that a wrap around either 0 (mod N) or & (mod N) oceurs when d is added to w;

is no greater than £.

Thus, we have restricted our attention to residues in Sy (the probability that the oracle is
queried on a residue larger than —"} is al. most, % + §). However, only hall of these residues are
in Mp. To deal with the other hall we apply the following
Oracle Transformation:

Let On be a (1 +¢)-oracle for the least significant bit of En. Le. on query En(m) (m € M),

On answers L(m) with probability at least % + ¢, where € = E‘g%“ﬁ'

Given En(z) (z € My) and access to the oracle On, we define an oracle OE:;) as follows:
On query k € Zy,

0@k = | On(En (k) w(£)=4

coin flip otherwise

Note that given £y (z) and access to the oracle O, one can easily simulate the oracle O(2. Also
note that if kxz € Sy, then o))[k) answers the least significant bit of kz with probability at least
(2 + %) Le. N) is ais a (3 + §)-oracle for the least significant bit of kz € Sn.

Note that all the oracle queries the ged computation initiates are of the form w; +d = lca:
when & is known to the ged procedure.
Note that

P?’(ngr) gives the least significant bit of w; +d) >
Pr(w; + d € Sy and O(I] is correct about it) — Pr(w; + d & Sn) >
(+9)-(E+D=L+1- 4.

The rest of the analysis is similar to the analysis presented in section 5. This implies
Theorem 3: The least significant bit for the modified Rabin encryption function is (% + T’o‘g%“ﬁ)‘
secure, for any constant e.
Corollary: Factoring a Blum integer, N, is polynomially reducible to guessing L(z) with success
probability 7 + Iogl ~ When given En(z), for z € My.

The proofs from the previous section about simultaneous security of loglog N least significant

bits and of bit intervals (for intervals of length £ 4+ out of the % long interval containing My)
hold here just as well, thus all these bits are also 1 5+ raglg"ﬁ secure.

8. Applications

8.1 Direct Construction of Pseudo-Random Bit Generators

A pseudo-random bits generator is a device which “expands randomness”. Given a truly
random bit sequence s (the sced), it expands it to a longer pseudo-random sequence. The question
of “how random” this pseudo-random sequence is depends on what exact definition of randomness
we are afler. A strong requirement is that the expended sequence will pass all polynomial time
statistical tests, namely given a pseudo-random and a truly random sequences of equal length, no

9

probabilistic polynomial time algorithm can tell which is which with better than 50 — 50 success
(this definition was proposed by Yao [20], who also showed it is equivalent Lo some other natural
definitions like unpredictability).

Blum and Micali were the first to construct such strong pscudo-random generators. Their
construction combines two results:
a)lf g : M — M isa | —1 one way function, and By(z) is %+ ¢ secure bit for g (where ¢ = any
polynomial fraction), then starting with a random s € M, the sequence obtained by iterating g
and outputting b; = .H(gi(s)) for each iteration is pseudo random (in the sense that each of its
bits can not be predicted better than 50-50, from the previous ones).

b) Demonstrating that a specific bit is % + ¢ secure [or the diserele exponentiation function.

We say that a generator is direct w.r.t the (underlying) one way function g if it produces at
least one bit per one iteration of g. We say that a generator is strong w.r.t an (assumed) intractable
problem, P, if" distinguishing its output from truly random sequences is as hard as solving P.
Notice that both the Blum & Micali generator and the Long & Wigderson generator®([13]) are
direct w.r.t discrete exponentiation and strong w.r.t discrete log.

Another direct generator was constructed by Blum, Blum and Shub [3]. Their generator is
direct w.r.t squaring modulo a composite number and strong w.r.t deciding quadratic residuocity.

Yao [20] made some generalizations to the Blum & Micali resull. He showed that having a
1 — 1 one way function f is enough and it is not necessary to have a specific secure bit. The
main idea is that if f is one way then some bits must be secure (even though not necessarily
% + € secure). Picking a polynomial number of random seeds sy, s2, ..., 5k, we get one strongly
pscudo-random bit b; by computing

€D 7(51) ® fi(s2). .. B f(sk).

(66 denotes bitwise XOR, and @ is the one bit XOR of the result.)

Yao XORing trick works for any 1—1 one way function, f, but the generators achieved that
way are not direct w.r.t f - to produce one bit, many applications of f are needed. For further -
details on Yao’s XORing trick and its proof consult Goldwasser [8]. _

All previously known results about the cryptographic security of Rabin/RSA scheme
(including Schnorr & Alexi result) do not suffice for constructing generators which are
strong w.r.t factoring/inverting the RSA and direct w.r.t Rabin/RSA encryption

function.
With L + m security, we can finally get generators which are direct w.r.t Rabin/RSA
encryption function and strong w.r.t factoring/inverting RSA. Each of the bits whose %'*'BBTJ'%'SE'N'

security is proven can be used as the “hard bit” the generator outputs. As a matter of fact,
with the stronger result that all loglog N least significant bits are simultaneously %-l- m
secure, we can get loglog N random bits per one application of the encryption funection. Since
the encryption in Rabin scheme is just one squaring and one subtraction, we get a very last

generator, whose security is equivalent to factoring a Blum integer?.

*Long & Wigderson’s generator produces log log p bits per each iteration of the discrete exponentiation (mod p)
function. This is due to their proof that this function has log log p simultaneously hard bits.

1A composite number N = pgq, such that p and ¢ are both primes congruent to 3 modulo 4

10

8.2 Direct Construction of Probabilistic Encryption Schemes

Observation, similar to the ones of scetion 8.1, apply to the probabilistic encryption scheme
suggested by Goldwasser and Micali [10]. Using our result we introduce the first direct prob-
abilistic encryption equivalent to factoring/inverting RSA. However, this implementation still has
the bandwidth expansion drawback; the plaintext is expended by a factor of U(mi&%)-

Recently, Goldwasser [9] used our result to introduce a new implementation of probabilistic
encryption, equivalent to factoring, in which the plaintext is only expanded by a constant
factor. Goldwasser’s scheme is approximately as eflicient as the RSA while provably leaking no

partial information, provided that lactoring is intractable.

Acknowledgments

We would like to thank Michael Ben-Or, Shafi Goldwasser, Silvio Micali and Ron Rivest for
very helpful discussions and useful ideas.

Oded Goldreich would like to thank Dassi Levi for her unique existence.

1]

References

[1] Ben-Or,M., Chor,B., and Shamir,A., “On the Cryptogrsphic Security of Single RSA Bits”,
15th ACM Symp. on Theory of Computation, April 1983, pp. 421-430.

[2] Blum, M., “Coin Flipping by Telephone”, IEEE Spring COMCON, 1982.

[3] Blum,L., Blum,M., and Shub,M., “Comparison of Two Pscudo- Random Number Generators”,
Advances in Cryptology: Proceedings of Crypto82, Chaum,D., et al. eds., Plenum Press,
1983, pp. 61-79.

[4] Blum,M., and Micali,S., “How to Generate Cryptographically Strong Sequences of Pseudo-
Random Bits”, to appear in the SIAM Jour. on Computing.

[5] Diffie,W., and Hellman,M.E.;, “New Directions in Cryptography”, IEEE Trans. on Inform.
Theory, Vol. 1T-22, No. 6, November 1976, pp. 644-654.

6] Feller,W., An Introduction to Probability Theory and its Applications, John Wiley & Sons
Inc., Vol. I, (1962).

[7] Goldreich,O., “On the Number of Close-and-Equal Pairs of Bits in a String (with Implications
on the Security of RSA’s L.s.b.)”, MIT/LCS/TM-256, March 1984,

[8] Goldwasser,S., “Factoring Based Encryption: Using the Exclusive-Or Function as a Security
Amplifier”, presented at EuroCrypt84, Paris, April 1984.

[9] Goldwasser,S., “An Efficient Probabilistic PKCS as Secure as Factoring”, in preparation.

[10] Goldwasser,S., and Micali,S., “Probabilistic Encryption & How to Play Mental Poker Keeping

Secret all Partial Information”, Proc. of the 14th ACM Symp. on Theory of Computation,
1982, pp. 365-377. To appear in the JCSS special issue from the 14th STOC.

[11] Goldwasser,S., Miecali,S., and Tong,P., “Why and How to Establish a Private Code on a
Public Network”, Proc. of the 28»d IEEE Symp. on Foundation of Computer Science,
November 1982, pp. 134-144.

[12] Lipton,R., “How to Cheat at Mental Poker”, Proceeding of the AMS short course on Cryp-
tology, January 1981.

[13] Long,D.L., and Wigderson,A., “How Discreet is Discrete Log ?”, 15th ACM Symp. on Theory
of Computation, April 1983, pp. 413-420. A better version is in preparation.

[14] Rabin,M.0., “Digital Signatures and Public Key Functions as Intractable as Factorization”,
MIT/LCS/TR-212, 1979.

[15] Rivest,R.L., Shamir,A., and Adleman,L., “A Method for Obtaining Digital Signature and
Public Key Cryptosystems”, Comm. of the ACM ,Vol.21, February 1978, pp. 120-126.

[16] Schnorr,C.P. and Alexi, W., “RSA bits are 0.5 + € secure”, presented at EuroCrypt84, Pa.ris,
April 1984.

[17] Shamir,A., Rivest,R.L., Adleman,L., “Mental Poker”, MIT/LCS/TM-125, February 1979.

(18] Vazirani,U.V., and Vazirani,V.V., “RSA Bits are .732 Secure”, to appear in the proceedings
of Crypto83.

[19] Vazirani,U.V., and Vazirani,V.V., “Cfficient and Secure Pseudo-Random Number Genera-
tion”, preprint, April 1984.

12

[20] Yao,A.C., “Theory and Applications of Trapdoor Functions”, Proc. of the 23rd IEEE Symp.
on Foundation of Computer Science, 1982, pp. 80-91.

13

