MIT/LCS/TM-208

THE TRAVELING SALESMAN PROBLEM

WITH MANY VISITS TO FEW CITIES

Stavros S. Cosmadakis

Christos H. Papadimitriou

November 1981

THE TRAVELING SALESMAN PROBLEM
WITH MANY VISITS TO FEW CITIES

Stavros S. Cosmadakis and Christos H. Papadimitriou**

Laboratory for Computer Science
M.LT., Cambridge, U.S.A.

Abstract

We study the version of the traveling salesman problem in which a relatively small number of
cities --say, six-- must be visited a huge number of times --e.g., several hundred times each. (It
costs to go from one city to itself) We develop an algorithm for this problem whose running time
is éxponential in the number of cities, but logarithmic in the number of visits. Our algorithm is a
practical approach to the problem for instances of size in the range indicated above. The
implementation and analysis of our algorithm give rise to a number of interesting graph-theoretic

and counting problems.

Keywords: Traveling salesman problem, dynamic programming, assignment problem, transportation
problem, minimal Eulerian digraph, feasible sequence, Stirling’s formula, Stirling numbers of the

second kind, min-cost max-flow problem, Edmonds-Karp scaling method.

*
Work based in part on the authors Batchelor's Thesis at M.IT.
** Work supported in part by NSF . Grant MCS79-08965.

1. Introduction

In this paper we study the following version of the traveling 'salesman problem (TSP): We are
given n cities, an axn distance matrix dij (not necessarily symmetric or with zero diagonal
* elements), and » integers k psky > 0. We are asked to find the shortest closed walk that visits
the first city k; times, the second city k times, and so on. (We are allowed to visit city 7 twice in a

row, but this costs us d;;)

This problem, which we call the many-visits TSP, is obviously a generalization of the TSP (the
TSP is our problem in the special case in which all ki s are equal to 1). It can also be considered
as a special case of the TSP (more precisely, a nonstandard representation of the TSP), in which
clusters of k; cities with identical rows and columns are treated as a single city to be visited k;
times. The many-visits TSP arises in connection to the applications of the TSP in scheduling. In
such applications, the cities are in fact tasks to be executed, and dij reflects the overhead associated
with the task j immediately following task i. Now, in certain applications, each task belongs to one
of a few zypes, and tasks of the same type have identical characteristics. For example, in the
scheduling of airplane landings, there could only be four types of tasks --e.g., regular, jumbo,
private, and military airplanes-- but several dozens of each may be pending at each time for
landing. There is a certain delay between the landing of an aircraft and the landing of the next
aircraft, depending on the types of the two airplanes. We wish to minimize the total delay. In the
- many-visits formulation of such a problem n would be 4, while the ki's would be the number of

airplanes of each type.

The many-visits TSP can be solved by extending the dynamic programming approach of [HK];
see [Ps] and Subsection 2.3 of this paper. This algorithm, however, requires time proportional to
nzn(ki + 1). For n = 5, for example, this is already prohibitive when the k/s are as small as 10.
In this paper we present a drastically different approach to the many-visits TSP, which results in an
algorithm with running time O(e(n) log(Zk,)), where e(n) is a moderately growing exponential
function of n. For reasonably small values of --say, up to 10-- our algorithm brings into the
realm of realistic solution instances with virtually unlimited kis. As evidenced by the running time

of our algorithm, which is sublinear in the ki's, the output is not the optimal walk itself, but a list

of the numbers of times that each edge (i) participates in the optimal walk. Naturally, since for
k; = 1 our problem becomes the ordinary TSP, this exponential dependence on 7 is expected (and

most probably inherent).

We shall now outline our approach. It has been one of the basic and oldest observations in the
area, that the TSP can be decomposed into two problems: The assignment problem [Ku, La, PS],
whose solution guarantees that each city is visited and departed from exactly once, and a
connectivity problem, which forbids "subtours" in tl_le solution. The first problem is easy, so the
hard part of the TSP is enforcing connectivity. Many branch-and-bound algorithms [Ch], algorithms
for special cases [GG3], and heuristics [Ka] are based on this decomposition. Our algorithm is
based on the following very simple idea: In the many-visits version of the TSP the first 'problem
becomes only a little harder (namely, the transportation problem [EK, PS]), whereas the connectivity
aspect becomes much easier, in the sense that it is a problem of size n, and therefore can be solved

exhaustively if n is small --and this is our working hypothesis.

More specifically, we can restate the many-visits TSP as follows: Given an nxn distance matrix
a'jj and » integers k jsky, find the shortest Eulerian directed graph with n nodes and with
indegrees k& -k, in the corresponding nodes. Now an Eulerian digraph must be strongly
connecled, and it must also be balanced, that is, it must satisfy at each node i indegree(/) =
ou.tdegree(z'). An Eulerian digraph that has no other Eulerian digraph as a proper subgraph is called
minimal. So, a solution of the many-visits TSP can be decomposed into a minimal Eulerian digraph
(this is the connectivity part) and a balanced (but possibly disconnected) digraph to bring the
degrees up to the required levels of the k;’s (this is the transportation problem). The fortunate fact
is that there is a fixed number of minimal Eulerian graphs on n nodes, independent of the k;s. Our

basic algorithm is now apparent:

1. Repeat the following step for each minimal Eulerian graph ¢ on n nodes:
2. Let §,....8,, be the sequence of indegrees of G. Solve the transportation problem with distance

matrix dzj and both capacities and requirements equal to & gl k8. Superpose the solution

to G.

3. Among the Eulerian graphs thu. generated, pick the cheapest.

Step 1, generating all minimal Eulerian graphs, can be done in a computationally feasible way
only by eploying some interesting graph theory, and using dynamic programming. We discuss this
in Section 2. In Section 3 we make some calculations that are necessary for the analysis of the
algorithm, solving some counting problems that are interesting in their own right. Finally, in
Section 3 we also outline a modification of the algorithm, which replaces the repeated solutions of
the transportation problem in step 2 above by the precomputation of the solution to a "master”
problem, plus the solution of (much smaller) incremental problems. This modification reduces the
computational complexity from ef(n) + & (n) log(Zk) to e(n) + n log(Zk) + €(n) logn, where

en) and €(n) are exponential functions of #, specified in Section 3.

2. Generating Minimal Eulerian Graphs

2.1 A Reduction

It is not at all clear how to implement the first step of our algorithm, i.e.. enumerating all
minimal Eulerian graphs on n nodes. In fact, the outlook is very bleak, because of the following,

rather surprising, result, proven recently in [PY]:
Theorem 1: Testing whether a digraph is minimal Eulerian is coNP-complete.

Fortunately, with a little thought we can circumvent this difficulty. Suppose that two minimal
Eulerian digraphs G and G’ generated in step 1 have the same indegree sequence (8;....8,). Then
the safne transportation problem is solved for both in step 2. Therefore, we need only consider the
cheaper (under dzj) digraph among G, G. Hence, for each sequence of integers, which is the
indegree sequence of a minimal Eulerian digraph (hereafter called a feasible sequence) we may
compute the cheapest Eulerian digraph with this indegree sequence. If the'resulting digraph is
minimal, we proceed to step 2. If it is not, it can be discarded: The final solution corresponding to
it will certainly be considered, when we consider the indegree sequence of the minimal Eulerian
digraph, which is necessarily a subgraph of the present non-minimal one. Of course, by Theorem 1,
we cannot test efficiently each resulting Eulerian digraph for minimality. To improve the efficiency
: of our élgorithm in practice, we could use a reasonably fast heuristic that detects some obvious non-

minimal digraphs.

Thus we have reduced step 1 to the following two substeps:
1.1 Generate all feasible indegree sequences of length n.

1.2 For each such sequence, find the cheapest Eulerian graph G that has as an indegree sequence the
given one,

We examine each of these substeps separately.

2.2 Feasible degree sequences

Surprisingly, although minimal Eulerian graphs are hard to recognize (Theorem 1), their degree

sequences have a nice characterization:

Theorem 2: (8 J--8,) is a feasible degree sequence iff it has at least max 8; I's in it

We prove the two directions separately.

Lemma 1: Let G=(V,E) be a minimal Fulerian digraph, and suppose indegree(vo)zk for some

voEV. Then there are at least k vertices with degree 1 in G

Proof: The Lemma is obvious for k=1. To prove it in general, consider a set C of cycles whose
union is G (by cycle we always mean simple directed cycle, i.e. directed cycle that does not repeat
any vertex; any Eulerian digraph can be thought of, although not necessarily in a unique way, as
the disjoint union of several cycles). Now construct the following finite sequence <Gp of partial
sub-digraphs of G (partiél because the vertex set of each of them, with the exception of the last one,
is a proper subset of V): each G is going to be the union of certain cycles in C. Gy is the union of
the & cycles in C that contain the vertex vg (for every vEV, indegree(v) is equal to the number of
cycles in C that contain 7). Once G; has been constructed, >0, then G4 4 is constructed as follows:
If there are elements of C that have not yet been used, at least one of them must contain some
vertex in G; (else G would not be connected); pick such an element of C and add it to Gz: to g;:t
G 3. det Gp.....Gy, be a sequence that can be constructed in this way (G,,=G). Let R(G),
i=0,....m be the property that G; contains at least & cycles in C each of which satisfies the following:
(i) It contains a vertex with degree 1 in G;.

(ii) The remaining cycles in C that make up G; form a connected partial sub-digraph of .GI-.
(Gf may also contain cycles in C that do not satisfy either (i) or (ii); R(GI) says that at least & of the
cycles in C that G; contains satisfy both (i) and (ii)).

We shall show by induction that R(G!-) is true for all i, i=0.,...,m. First, we show that R(GO) is
true: G contains exactly k cycles in C, and each of these satisfies (ii) (since the remaining cycles
have a common vertex, namely ip)- But also each of these cycles satisfies (i), because if one of them,
say C 7 does not, then each vertex in CJ also belongs to some other cycle among the cycles that
make up Gy thus, by removing Cj from Gy (ie. by removing the arcs in Cj) we are left with a

connected sub-digraph of Gy. Consequently, by removing € i from G we obtain an Fulerian proper

sub-digraph of G, which contradicts our hypothesis that G is minimal Eulerian,

Suppose now that R(G,), i20, is true, i.e. at least k of the cycles in C that G; contains satisfy
both (i) and (ii); call these cycles C 1Cp 2>k We shall show that R(G4 1) is true. Call G +1 the
cycle in C that was added to Gz' to obtain GI- b observe that Cl +1 contains a vertex with degree 1
in G;4 1, or else we could remove C 1+1 from G; +1 (and G) and obtain a proper Eulerian sub-
digraph of G; +1 (and a proper Eulerian sub-digraph of G). NOWA distinguish three cases:
1. €41 does not have any vertices in common with any of C 1»-Cp Then R(G;, 1) is true, since
C.Cy satisfy both (i) and (i) in Giyq
2. ¢ +1 has common vertices with only one of C 1-Cp say with Cj— Then C; +1 and any of
Cj..,Cy except possibly Cj satisfiy both (i) and (i) in Gy 1, so again R(G;jy) is true.

3. C[—H has common vertices with Cj]""’c lgf],._.,jhgl, >1. Then for P#j,. r=L..h, Cp,

iy
1<p<, satisfies both (i) and (ii) in G C}(:nsider now er, 1<r<h; it clearly satisfies (ii) in
Gi +1- since it satisfies it in G[- and CI +1 has at least one common vertex with st, s#r. But then
er also satisfies (i) in G4 1. since otherwise we could remove it and obtain a proper Eulerian sub-
digraph of . Therefore, R(G; 1) is true. Since cases 1-3 exhaust all possibilities, the inductive
proof is complete.

It follows that R(G,,). ie. R(G), is true; but this means that G has at least % vertices with degree

1, and we are done.]

Lemma 2: Let (§;,....8 n) be a sequence of integers such that there are at least max & s L83in it

Then it is a feasible degree sequence.

Proof: Given such a sequence (8 8). we shall construct a minimal Eulerian graph G with degree
sequence (8.....8,). First, suppose that the number of 1’s is exactly equal to the largest §, say k.
Without loss of genecrality k:612622...26n_k>6n_k+I:...:Snzl. G is constructed as the

union of & ¢ycles. Each of the k cycles contains some of the vertices 1,2,...n—k, and a different one

pn-k. The 8, p—~8 —p next (possibly 0) are of the form (L2,...n-k-1,;1). The 8 t—7 O k1
next are of the form (1.2,...1-k-2,31); and so on. Finally, the & 85 last are of the form

(141), for a total of (6_,—62)+(62~83)+...+(8”_k_]~8},1_k)+6”_;(:8]=k cycles, exhausting all k&

indegree-1 nodes.

The construction is illustrated in Figure 1 for the sequence (5, 3, 2, 2, 1, 1, 1, 1, 1). It is
immediate that (a) each node has the appropriate indegree, and (b) the resulting digraph is minimal

~ Eulerian, since any cycle in it contains an indegree-1 node.

For the case of more than & 1’s among the 8 ;S just insert the superfluous indegree-1 nodes in

one of the cycles. |

Theorem 2 follows immediately from the two Lemmas.

As a consequence of this characterization, feasible degree sequences of length 7 can be easily

enumerated as follows:

1. For k=2,.,n repeat step 2.
2. For each sequence (8 8 g) With k>8 j=--=>8,, 3>1 rtepeat step 3.

3. Generate all distinct permutations of (8 0 § T X

n-k

All enumerations implicit in the steps 2 and 3 are easy to do.

2.3 Op;imal FEulerian Graphs

programming [HK, Ps] in order to find the shortest Eulerian graph with this degree sequence. For
each degree sequence a<§ (componentwise comparison), and each i, 1<i<n, let C(a; i) be the
cost of the shortest possible way of starting from city 1, visiting city j aj times, j=1,...n, and ending
up in city & We then have the recurrence
Uay,ay;,)= m.in [C(a],...,ai-_J, el oy Jrolns) dji]
J
with the initial conditions (1, 0,..,0, 1, O,...,O;f)zd” (I's in the first and ith position).

Finally, the cost of the optimal Fulerian graph with degree sequence § is given by

Cop[: min [C(8,) + a},]
J

The straightforward implementation of these recurrences takes time O(n2 I1(8,+1)). As usual,

we can equally easily recover the optimal Eulerian graph in the same amount of time.

10

3. Analysis of efficiency

3.1 Preliminaries

Let F(n) be the sct of all feasible degree sequences of n nodes. Also, let us define the quantity

DP(n) = b m@; + 1)
(878,)EFM) i

We can analyze the complexity of our algorithm as follows: The algorithm essentiaﬂylf boils
down to solving an optimal Eulerian digraph problem, and an nxn transportation problem with
capacities approximately k; for each degree sequence in F(n). The total effort expended in the
dynamic programming algorithm is a small constant times nzDP(n). If we use the Edmonds-Karp
scaling method for the transportation problem (sce [EK] and subsection 3.3), each such problem
takes time O(n3 log(2k;)) for a total of O(|F(n)| w3 log(Zk;)). We must therefore derive

asymptotic estimates for Fn) and DP(n). This is the subject of the next subsection.

3.2 Counting Problems

Proposition 1:

n

(@) |F(w)= kz Clnk) (k-1)"*
=2

n
(b) DP(n)= = C(nk) 2F [(k-1)(k+4)/2)k
k=2

(Here by C(n,k) we denote the number of ways for choosing % objects among n).

Proof:
(2) Suppose § ;=1 exactly for i= I, Where m=1,...k; each of the other n-k eclements can take
any value between 2 and % so there are (A-1)% such sequences. For any given k, there are

C(n k) ways to pick ipnip; also, k can take any value between 2 and n

11

n
(b) Suppose §;=1 exactly for i=i,, where m=1..k; II (6,+)= 1 (6;+1)

=i, 8
1<m<k
I (6;+1). The first factor is equal to Zk, and in the second factor (§;+1) can take
il
for all m
1<m<k
n
any value between 3 and k+1, so p n (6i+1)=2k[3+...+(k+ 1)]”—k:
SeEMn) i=1
§;=1 iff i=i,
1<m<k

= 2K [(k+1) (k4272 - 317 k= 2K [(k-1) (k+4)/21" K, since (k+1)(k+2) - 6= k2+3k—4=
=(k-1)(k+4). Again, given k there are C(mk) ways to pick If.ip, and k can take any value

between 2 and n 1§

Since the counts for |F(n)| and DP(n) are not in closed form, we shall now derive lower and

upper bounds for |[{n)| and DP(n), to obtain some more information about their respective rates of

growth,

For n>3, 2<I'n/2Kn, and one can get lower bounds for |F{n)| and DP(n) in a trivial way,

by taking the term corresponding to k=In/27 in the respective sum. Specifically,
IFm) > ClnFnr2) (Fn/21-D)E 24 and
DP(n) > C(nFn27)y 2P/ 2 [(Tp/27-1) (Tr/21+4)2- 24>
> CnTw2l) W22 (0 qy2lni2]y
> C(nTn/27) (Tw/21-1t
Since Mn/27>n/2 and Ln/21>n/2-1, we thus have
[FW] > CnFn/27) (w2121,
DP(n) > C(nln/27) (n/2-1)"1.

S s i . 1
Moreover, by Stirling’s formula (n!= " ¢ (2an)”?) we have

12
Cr= @AVARS @07 =27 Qa2 i" €2 2ar= 22T (my % and
CRr+Lr+1)= Qr D+ D)IA= [2AVAA] [Qr+ o+~ 227 (ary %,
0 Clm/2N= 21 (aln/2ly o 27 (mn/2y

(an::bn means lim a,/b,=1); this gives an idea about the rate of growth of these lower
n—>00

bounds.

We can also obtain trivial upper bounds by replacing (k—l)”‘k in the summation expression
for |F(n)} by (n-1)", and by replacing 2k [(&-1) (k+4)/2]" K in the summation expression for
DP(n) by 2" [(n-1) (n+4)/2]"= [(n-1) (n+4)]" . We thus obtain, using the well-known fact that

the sum of the binomial coefficients C(nk) for k=0,...n is equal to 27
IFm) < R(n-1))" and DP(n) < [An-1) (n+4)"

Observe that it immediately follows from these straightforward bounds that log|F(n)|=

=0O(nlogn), and logDP(n)=6(nlogn).)

We shall now derive some more elaborate bounds. First, we derive an upper bound for |F(n)|

by estimating the maximum of (ik-1)"" K when k ranges from 2 to n

Theorem 3: For any &0, |F(n)| < [(2+¢) n/Iogn](] e for large enough n (log denotes the

natural logarithm).

E

Proof: Consider the function 3:(1,00)=R defined by yx)=(x-1)"* where m?2;
Y(x)=(x-1)"Xg(x), where gx)= (n~x)/(x-1) - log(x-1)= -1+ (r~1)/(x-1) - log(x-1). Now
gix)= —(nil)/(x—l)2 = V(x-1K0 (x>1), and g2)=n-20, gln)=-log(n-1X0, so g(x) has a
unique root Xg in (2,n). Also g(x»>0 for I<lxp, g(xX0 for X>Xp, S0 y has an absolute
maximum Yiniaix at X Since 8(xp)=0, (n—xo}/(xo—l):]og(xo—l), and
Ymax= 2= (xgD)™X0=(xr)¥ D180, Since x;-151, we have that if x;-1¢u then
)’max(f“‘plog“' But now if % is such that n)kek_]+1, then

I+logl(n-1)/kPk, so for x>1+(n-1)/k we have T+log(x-1)= 1+log[(n-1)/kp k>

13

=>(n-1)/(x-1), which gives g(xK0, so xK1+(n-1)/k. Thus, if mkek-1 +1 xgIK(n-1)/k
and .0, < (L7 U=D/ Klogl(m=D/K - aing k=logn-loglogn, we have that mdkek1+1
iff (after some calculations) n[1-1/e+(loglogn)/(elogn)>1, which is true since for m>2 we have n>e_
and loglogn>0, and thus #[1- 1/e+ (loglogn)/(elogn)]> n(1- 1/e)> 2(1- 17e)> 2(1- 1/2)=1. Now
for any &0 we have for large enough n ne/(+5)>1ogn, . which is equivalent to
1/(logn-loglogn)X(1+¢)/logn, so y, < [(1+e) n/logn)l{/ +¢€) n/lognllog[(1+e) n/logn] gince
(1+¢)/logn<l for large enough n, we obtain

I’ [(L+e) n/logn][(] +e) n/logn] logn_ [(I+¢) n/logn]I+E But now
n

for each & in [2,n], (k-1)"K<y, = by the definition of y, so |Al= = C(nkXk-1y"k<
k=2
n
max 2 CnR)=ypg, @-n1K 20+ [(+e) 2n/10gn T, Replacing ¢ with
k=2

e/2, we obtain |F(n)K [2+¢) n/logn]/ +¢/DN which gives |FmK [(2+¢) n/logn]! TN for

large enough n. |
The following analogous result for DP(n) is proved by exactly the same method.
Theorem 4: For any ¢>0, DPn) < [2+¢) n/logn](2+£)” for large enough n. |

To improve the lower bound on |F(n)|, we first find alternative summation expressions for |F(n)|

by calculating the exponential generating function of the sequence |F(n)).

Proposition 2:

@ W= () + 3 /o kpADkE kenke
2kj+3ky+...=n

where n>2 and the k;s are non-negative integers.

Ln/21
®) |Fwl=) + 3 m/(n-r) S(n-r, 1)
. r=

where n>2 and S(n, k) is the Stirling number of the second kind which is equal to the number of

partitions of an n-element sct into exactly k classes.

14

Proof: We first calculate the exponential generating function of the sequence |[F(n)l:

(0.0} o0 n .
)= 2 |Fn)| Xn = = (= Cnk =D)"F) xn =
n=2 n=2 k=2
co n
= 3 S Rk ()R xym =
n=2 k=2
o o0
= = S (DA Rk xR =
k=2 n=k
(o0} [0 0]
= 22 Krry Lk=Dx — —);c 22 (xex)k/kl =g (exex -x* - 1) = M- _ x - e~

(@) We find an alternative expression for the coefficients in the expansion of Ax):

o0 o0
~x-€X¥ =1+ 32 W v = a1+ 3 ! Yy, and
n=0 n=
‘ cQ o] v el
D = 3 N = = Un (3 Kty =
n=0 n=0 i=1
co e o]
== Un 3 kot T A+ Dkyanki =
n=0 k1+k2+...=n i=1
= b XKy 3kt g iankn kpanka. =
k20, k520,
. w .
=3 [b kR kenke xm =
n=0 2k1+3k2+=n
s 0]
1+ = [> n/ kDKL kenka.] xn
n=2 2k +3ky+.=n

Thus, since fx) = (- x - €% + ex(ex_l) , we obtain

\Hn) =)t 4+ b /DKL keno..
2k;+3ky+.=n

15

(b) We re-write the summation expression obtained in (a) as follows:

Ln/24
Il = ()™ 4+ = > n/(n=nt (=) kMADKD kpanko..
r=1 k;+2ky+..=nr
k1+k2+...=?‘

But now observe that (n-r)!/k]!(1!)]‘1 k2!(2!)k2... is equal to the number of partitions of an
(n-r)-element set in which there are exactly k; classes with i elements, so the inner sum is equal to
m/(n-r)! S(n-r, r). Therefore,

La/24
IFw) = ! 4 RGN I
Using (b) of Proposition 2, we can improve our lower bound as follows: We first obtain a

simple estimate for S(n, k):
Lemma 3: S(n, &) > k™%/n

Proof: The number of ways of putting n distinct objects into # distinct boxes is equal to k!S(n, k);
the number of ways of putting » distinct objects into & distinct boxes such that object 7 is in box i is

equal to K"°K; clearly, KIS(n, K)>KTK | 1

By considering the term corresponding to r=Lpn] in the summation expression for |F(n)|

given in Proposition 2 (b), and using Lemma 3 and Stirling’s approximation, we have

Theorem 5: For all 0<p<1/2, |F(n) is bounded from below for large enough n by
(cp n=2PY" Qup(l=p) YR (eI 1P)
where ¢y = p"—3p(1—p}["1 , and &0.

The first few values of |F(n)| are given in Table 1.

16

|F(n)] DP(n)

4 =4

15 456

66 5,992

335 101,212
1,898 1,889,428

Table 1

17

3.3 Solving the Transportation Probdlem

In this subsection we briefly outline the Edmonds-Karp -scaling method for the min-cost
network flow problem, of which the transportation problem is a special case. Recall that we wish to
" find the cheapest "pseudo-Eulerian” (i.c., with balanced indegrees-outdegrees but perhaps not
connected) digraph with the given indegrees ¢;=k8; This is equivalent to the min-cost max-flow
problem on the following network N ([FF, La, EK, PS]): The nodes of N are {s3U{sp1;
i=1...,n} and the arcs are 1ssy, (1:0): i:l,...,n}U{(sl-,tj): ij=1,..,n}. Arcs (ssy), (159 have cost

0 and capacity ¢; whereas arc (sf,{’) has cost dij and capacity ©0,

A flow ffrom s to 7 in N is called extreme if it is of minimum cost among the flows of equal

value. It is called pseudo-extreme if there exist real numbers u, v,

vy i=l..n such that

(a) ”F"j"' dijZO for all 4 j and (b) whenever u1~vj+ dz'j>0 we have 0 flow in ffrom s; to tJ If we
start with a pseudc-extreme initial flow we can perform flow augmentations that preserve the
pseudo-extreme property. The maximum flow we end up with is therefore pseudo-extreme, and it

turns out that the maximum pseudo-extreme flow is also extreme, and thus the desired solution (see

[EK] for a proof).

Define now the p-th Approximation to our problem to be a min-cost max-flow problem on the
same nodes, arcs and costs, only with capacities {Lcllzp_l}. The original problem is thus the 0-th
Approximatiop. If fis a pseudo-extreme flow in the p-th Approximation, then obviously 2fis a
pseudo-extreme flow in the (p-1)-th. The Edmonds-Karp scaling method computes in this way
successively maximum pseudo-extreme flows for Approximations [Fl,.., 0, where

I=Tlog {max ¢)1. Each Approximation can be solved in O(ng) time, and the total complexity is
i
O(log(Zc)).

For our problem we must solve |F{n)| such min-cost max-flow problems, all with the same
nodes, arcs and costs, and with capacities varying slightly (namely, ¢;=k8) for a total complexity
O(|F(n)| n log (Zk;)). Instead, however, we could solve a single "master” problem with capacities
{ L(krn)/2p.l}. where p is to be determined. Then we solve each of the |F{n)] problems by starting

with the (p-1)-th Approximation, and with initial flow 2f. where fis the optimum flow in the master

18

problem. By taking p=Tlogn1 we can solve each of the |F(n)] problems i) 0(113 logn) time
(notice that always k6 ;= krn). The total computation for the transportation problems is therefore

reduced from O(F(m)| n log(Zk)) to O log(Sk) + |Am| n° logn).

19
4. Discussion

A good part of our investigations has been of rather theoretical interest --e.g., the asymptotic
improvement sketched in Subsectior. 3.3. Nevertheless, we think that our algorithm is of practical
value, since it can be used to solve instances of size far beyond those previously thought possible.
One of the most attractive features of our algorithm in practice is that, if # and the distance matrix
are known and fixed in advance, then the best part of the computation (i.e., the generation of F(n)
and the computation of the optimal Eulerian graph for each sequence in it) can be done once and
for all, and the results stored in a large table. Besides, our algorithm can be adapted to find the
optimal solution of a dynamically evolving instance (e.g., by performing a few more augmentations
in the transportation problem whenever the k/s are increased), whereas the dynamic programming
approach is not very flexible in this direction. Naturally, there is a drawback: Our approach is best
suited for minimizing the length of the walk (the makespan, or finishing time of the last job, in
scheduling terminology), while dynamic programming can be adapted to optimize other objectives
as well [Ps]. We also mention in passing that our approach to the many-visits TSP is reminiscent in

spirit of the classical “precomputation” approach to the cutting-stock problem [GG1].

A practical implementation of our algorithm would most probably incorporate a less
sophisticated code for the transportation problem than the Edmonds-Karp scaling method, and
could use a heuristic test for minimality for the digraph G produced in step 1. Of course, the
ultimate heuristic would be to first solve the transportation problem with requirements and
capacities k; and then check whether, by a stroke of luck, the resulting digraph is connectéd. One

might expect that this should happen much more often in this problem than in the ordinary TSP.

20
References
[Ch] N. Christofides Graph Theory: An Algorithmic Approach, Academic Press, 1975.

[EK] J. Edmonds, R.M. Karp "Theoretical Improvements in the Algorithmic Efficiency for
- Network Flow Problems”, JACM, 19, pp.248-64, 1972.

[FF] LR. Ford, Jr, D.R. Fulkerson Flows in Networks, Princeton Univ. Press, 1962.

[GGI] P.C. Gilmore, R.E. Gomory "A Linear Programming Approach to the Cutting Stock
Problem”, JORSA, 9, pp. 849-859, 1961. Part II, JORSA, 11, pp. 863-888, 1963.

[GG3] P.C. Gilmore, R.E. Gomory "Sequencing a One-State Variable Machine: A Solvable Case of
the Traveling Salesman Problem”, JORSA, 12, pp. 655-679, 1964.

[HK] M. Held, RM. Karp "A Dynamic Programming Approach to Sequencing Problems",
JSTAM, 10, pp. 196-210, 1962.

iKa] R.M. Karp "A Patching Algorithm for the Non-symmetric Traveling Salesman Problem”,
SIAM J. Comp., 8, pp. 461-473, 1979.

[Ku] H.W. Kuhn "the Hungarian Method for the Assignment Problem”, Naval Res. Log. Quart, 3,
pp. 253-258, 1956.

[La] E.L. Lawler Combinatorial Optimization: Networks and Matroids, Holt-Rinehart-Winston, 1976.

. [PS] CH. Papadimitriou, K. Steiglitz Combinatorial Optimization: Algorithms and Complexity,

Prentice-Hall, 1981 (in press).

[PY] CH. Papadimitriou, M. Yannakakis "On Minimal Fulerian Graphs”, Information Proc.
Letiers, to appear, 1981.

[Ps] H.N. Psaraftis "A Dynamic Programming Approach for Sequencing Groups of Identical Jobs",
JORSA, 28 pp. 1347-59, 1980.

