MIT/LCS/TM-192

THE DEDUCIBILITY PROBLEM
IN
PROPOSITIONAL DYNAMIC LOGIC

Albert R. Meyer
Robert S. Streett

Grazina Mirkowska

February 1981



The Deducibility Problem in Propositional Dynamic Logic
by

Albert R. Meyer
and
Robert S. Streett

Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts USA

and
Grazina Mirkowska

Institute of Mathematics
Warsaw University
Warsaw, Poland

January 13, 1981

Abstract: The problem of whether an arbitrary formula of Propositional Dynamic Logic (PDL) is
deducible from a fixed axiom scheme of PDLis l-complete This contrasts with the
decidability of the problem when the axiom schemc is replaced by any single PDL formula.

This rescarch was supported in part by the National Science Foundation, Grant Nos. MCS 7719754,
MCS 8010707, and MCS 7910261, and by a grant to the MI'T Laboratory for Computer Science by the
IBM Corporation.



The Deducibility Problem in Propositional Dynamic Logic
1 Introduction

Propositional Dynamic Logic (PD1.) [1] is an extension of propositional logic in which "before-after”
assertions about the behavior of fcgulzu program schemes can be made directly. Propositional
calculus, temporal logic and the most familiar versions of propositional modal logic arc all embeddable
in PD1. but PDL nevertheless has a validity problem decidable in (deterministic) exponential time [4].

In this paper we consider the deducibility problem for PDL, namely the problem of when a formula p
follows from a set " of formulae. The problem comes in two versions:

(1) pis implied by T if and only if AT — pis valid.
(2) p can be inferred from T if and only if p is valid in all structures for which AT is valid.
Note that if p is implied by T" then it can be inferred from T, but the converse does not hold in general.

For a finite st T, the question whether p is implicd or inferred from I reduces to whether a formula of
PDI. is valid and so is decidable. However, axiomatizations of logical languages such as the
propositional calculus or PDL are often given in terms of axiom schemes, namely, formulac whose
variables may be replaced by arbitrary formulae. Thus, a single axiom scheme actually represents the
infinite set of all formulac which are substitution instances of the scheme. Our main result is that

the problem of whether an arbitrary PDL formula p is deducible from a single fixed axiom
scheme is of extremely high degree of undecidability, namely T ll-compfete.

This result appears unexpected for at least two reasons. First, the easily recognizable infinite set of
substitution instances of a single scheme scems initially to provide little more power than a single
formula. For example, the problem of whether a single ”DL scheme is a sound axiom, i.e., whether all
its substitution instances are valid, is cquivalent to the question of whether the scheme itself regarded
as a formula is valid. Hence it is decidable whether a scheme is sound.

Sccond, many familiar logical languages satisfy the compactness property, namely, that if p is deducible
from T, then in fact p is deducible from a finite subset of T'. It follows directly from compactness that
the deducibility problem from T is recursively enumerable relative to I and the set of valid formulae
of the language. Since the sct T obtained from a single axiom scheme and the set of valid formulae of
PDIL. arc cach decidable, compactness of PDL would imply that the deducibility problem was
recursively enumerable, whereas T1 lj-comp]ctcness in fact implics that the deducibility problem for




PDIis not even in the arithmetic hicrarchy. This provides a dramatic illustration of the familiar fact
that PD L is not compact.

The idea of our proof is based on an observation of Mirkowska and Pratt [2] that with a finite set of
axiom schemes one can essentially define the integers up to isomorphism. This idea is extended below
to define structures isomorphic to the five dimensional nonnegative integer grid with coordinatewise
successor and predecessor functions and an arbitrary monadic predicate. Program schemes interpreted
over these grids can compute arbitrary recursive functions of integer and monadic predicate variables.
The validity of formulae asserting termination of program schemes corresponds to the validity of
arithietic formulae asserting the existence of roots of such recursive functions. Validity of such
arithmetic formulac with predicate variables is well known to bea 1, l-complete problem.

In the next section we review the syntax and semantics of PD1. and give formal definitions of the
implication and inference problems from axiom schemes. In Scction 3 we define the structures called
grids and show that they are precisely characterized by a single axiom «cheme. ‘This casily yields the
main resultin Section 4 that the deducibility problems are TT, L-complete for PDI. schemes. The
argument is then sharpened to show that TT 1]-C()1nplctcncss of the inference problem holds even for a
restricted version of PDL, namely, detenministic PDL with atomic tests. Section 5 lists some open

problems and related results.



2 Propositional Dynamic Logic

We are given a set of atomic programs I and a set ol atomic propositions ¢, Capital letters
A4 B (... from the beginning of the alphabet will be used to denote clements of I, and capital
letters P, Q. R, . .. from the middle of the alphabet will be used to denote clements of @,

Definition: The set of programs, 1. and the set of formulac, ®, of propositional dynamic logic (PD1.)
are defined inductively as follows (note the use of letters a, b. ¢, . . . to denote clements of I

and p, g. . . . . to denote clements of ).

m (Hn,Cc Mand €11
(2)Ifa. b € [ then a;b, aUb, a* €1
(3)IfpE dthen p?ET

o ()9, C @
(2)If p. g € ® then —p, p&g € P
(3)Ifa€ Nand p€ ® then<adp € @

Definition: A PDL. structure is a triple § =<U, &= 5 <> S) where
(1) U is a non-cmpty set, the universe of states.

Q)Fgisa satisfiability relation on the atomic propositions, i.c. a predicate
on UxIl,

(3) <» g maps cach atomic program A to a binary relation < 4> ¢ on states,
ie<A»C Ux U.

Definition: For any structure S, the relation = g and map <»gcan be extended to arbitrary formulae
and programs as follows:

(D ukEgpiffnotu Fgp.

(2)uk=¢p&qiffu FEepanduFggq

(3) u =g <adpiff 3v. u<ar gv &vEgp.

4) u<8>Sv forno w, v.

(5) ua;b> gviff Iw. uda> gwand w(b)sv.

(6) udalU by oviff uar gvor ulb? gv.

(7Y uda*> 5V iff u<a» S"‘ v, where <a> S* is the reflexive transitive closure of <a» 5
(8) up?r gviffu = vand u F=gp.

The standard semantics for PDL given above fix the meaning of the program § as the empty program.
If @ and b arc two programs, then a;b is the program in which a is followed by b. The program aUb
permits the nondeterministic choice of either a or b. The program g* permits a nondeterministic choice



of some number (possibly zcro) of repetitions of a. If p is a formula, then p? is a test or guard program
which acts as the identity program if p is truc and acts as the empty program @ otherwise.

Notation; 1f T is a set of formulae, then we write u = T ifand only if u =g p forevery p€T.

Definition: 1f pis a formulaand S = <U, k=, <> > isastructure, then pis validin § if and only if
uk=gpforallu€ U. If[isaset of formulac, then I is valid in .S if and only if every
formula in T is valid in S. We say that T implies p if and only if for all structures .S and
states u, if u = T then k=g p. Wesay that T infers g if and only if ¢ is valid in every
structure in which [ is valid.

Remark: If T implies p then I' infers p, but the converse does not hold in general.

Definition: If pand g are formulae and Q is a primitive proposition. then qu is the formula obtained
by substituting ¢ simultancously for every occurrence of Q in p. If L is a sct of formulae,
then pQL is the set of formulae obtainable by substituting an arbitrary formula of L for Q in

pie. pQL = {pQ" | g€ Li.

Definition: The scheme implication problem for a sct of formulae L is to determine, for given formulae
pand g and primitive proposition Q, whether pQ[‘ implics g. The scheme inference problem
for L is to determine whether p," infers g.

It is technically convenient, given a structure, to identify or collapse states which are indistinguishable
by formulae.

Definition: If § = <U, =, <> o> is astructure and L is a set of formulac, then the L-collapse of S is the
structure 7' = <V, =, <> >, where the clements of ¥ arc equivalence classes of Umodulo
L, where u is equivalent to vmodulo L if and only if  and v satisfy exactly the same
formulae of L. For atomic propositions P and equivalence classes [u] € ¥, we define the
satisfaction relation F=.by the condition [u] k= Piff 3v € [u]. vI=g P. For atomic
programs A and equivalence classes [u], [] € ¥, we define the map <> by the condition
[l A> (V] iff Iw € [u]. 3z € [v]. widP gz

Lemma 2.1: If Tis the PDL-collapse of a structure S, then for all PDL formulae p and states u of S, u
E=opiff[u] =op. )

Proof: Straightforward, by structural induction on formulac. §

It will be convenient to consider structures in which there is a designated initial state u, and the entire

universe is accessible from u by programs using a given set of primitives.




Definition: 1f § = KU, <> u€ U, and aisasct of atomic programs, then the a-cut of S from u
is the structure 7' = <V, = <>, where V = eV, UV A, )*» gv for some
e €a}. Weletul=, Piffulb=g P and we let us A> ;v iff A € aand u< A> gv.

Iemma 2.2: Supposc that T is the a-cut from the state 1 of some structure S and that a contains all the
atomic programs appearing in some PDI. formula p. Then for all states v of T, vi=,pif
and only if vF g p.

Proof: Straightforward, by structural induction on formulae. i

Corollary 2.3 1f a contains all the atomic programs appearing in a PD/. formula p, then for all

structures S, p is valid in S if and only if pis valid in all the a-cuts of S.

Prooft FFollows immediatcly from Lemma 2.2.1




3 Characterizing the Integer Grid by an Axiom Scheme
Notation: We define the following familiar and convenient abbreviations:

ldlg = 4 7<&>Tg

A =4 0"

pVq = (Tp)&(79)
p~q =4 (TPIVyq
peq =g (P> P&(g—=>p)
true = ;P> P

Jalse = 4 Ttrue

& =4rA

n

a
if p then a else b :dr(P??“)U("“‘p?;b)
“’hil{’pd{) a :df(p?:a)*;_'P?

For the remainder of this paper let @ = {A, 4;, 45, 4, A5, B, By, By, By, Bs} be a fixed set of
atomic programs and let Q and R be fixed atomic propositions. For1 < i <5, let zero; be an
abbreviation for [B }false and lct zero be an abbreviation for A | ;< zero,

Notation: N° is the set of quintuples of natural numbers. We will use variables x, y. ... to denote
vectors <X, Xy Xy X0 X2, <Y1 ¥ V3 Vg Vg2, ‘The five successor functions o, 05, 63,
04 ogarcdefined by y = a(x) ifand only if y, = x;+ L and Y= % for j# i

A canonical gridis a structure S = NS, = (. <7 ¢ such that A, acts likco, Bacts like the inverse of & i
(so that zero; = dJ,.[B Ifalseis truc only at vectors whose i coordinate is zero), and R depends only on
the first coordinate of vectors. A grid is any structure isomorphic to a canonical grid; we give a formal
definition below.

Definition: A gridis a structure S = <U, =g, <> o> with a bijection @: U = N such that:
(1) Forall 4, v € U, u¢ 4> gvif and only if 9(3) = o (p(w).
(2) Forallw, v € U, u< B> gvifand only if g(u) = o (V)

(3) Forallu € U,iful=g¢ R then vi= ¢ R for all v such that @(v); = o(u),.



Definition: 1 et grid-scheme be an abbreviation for the conjunction of the following formulae:

zero-axiont: < Bl* : Bz*: B}*: 134*; BS*>zeru
identity-axiont: N < 1< s CAPKBD e

AB-axion: AlSr’#[SS (KA B e < <Bj><A!.>1ru(’)
BB-axiont: Ay << (CBYXBYtrue < <BXBYue)
R-axiom: R = Ay < i UAIR &[B1R)

determinism-scheme: N |« j5 (KAPQ = [4]10)
identity-scheme: \ | < ;<5 (Q = [4:B1O)
AA-scheme: AISUS5 Gt AJ)Q — [/Ij;Al.]Q)
AB-scheme: Alﬂf¢js5 (<AI.;BJ.>Q — [Bj;A’-]Q)
BB-scheme: A 1<ij<s (KB}, BJ>Q - [Bj‘, B10)

Proposition 3.1: The grids are precisely (up to isomorphism) the a-cuts of PDi -collapses of structures
EDL -

S in which grr’d-sdzemeQ is valid.
15:-0(yf: It is straightforward to verify that grr‘a’-:;chen'zeQ‘F "DL is valid in every grid and that every grid is
(isomorphic to) the e-cut of the PD/.~collapse of a grid.

Ior the converse, suppose that 7 = <V =, <>, > is the a-cut from an cquivalence class [u, ] of the
PDI-collapse of astructure § = U, =, <> > in which Ls:rid—scizwm‘Q””‘ i5 valid. We shall show that
Tisagrid. Lemmas 3.2 through 3.13 will establish the existence of a bijection p: V' — N3 which
makes T agrid.

Lenma 3.2: There is an equivalence class [w_, ] € Vsuch that [w,,, | F= - zero.

zero

Proof? Since grid-scizemeQP DL i valid in S, zero-axiom is valid in S, hence

= <l}i*;B,*;B,*;B;;BS*)* zero. Hence there is a state u,,, € Usuch that

b X B LBy By BB g, andu,,, F g zero. Then [u,.,) F=zero, since Tis the
a-cut from [w,Jofthe PDI-collapse of S. 1

usmr!
1

S!(]J‘I]
Definition: An AB-program is any program of the forma; ... ja,, where cach a; isAoran A;oraB;
An A-program is simply an AB-prorgram without any B/s. A canonical A-progrant is an
X X X X X
- - - A, %4455
A-program of the form A, "1 4," 2437314, A3 for some X, X, X3, Xy Xg >0. We
abbreviate Alxl;Azxz;A3x3;A 4‘x4:A5x5 by prog(x).

Lemmia 3.3: 1[[u] € Vand ais an A-program, then there is at least onc [v] such that [u]<a? Dl

Prooft We first prove this lemma for the case where a is A, for some & By identity-axiom, u = ¢
<A Bp1rue, so that there is at least one v € U such that u{ 4> gv. ‘Then [u} A i>1["]' since Tis



an a-cut of the P/ -collapse of S. The lemma can now be proved for arbitrary . I-programs by

an easy induction on the length of programs. 8
Lemma 3.4: 1f [1] € V and ais an A-program, then there is at most one [v] such that [ul<a>,[v].

Proof: We first prove this lemumna for the case where ais 4; for some . Suppose that [u)<A>,[v] and
[ul 4>, [w]. Then us A ovand u<A> gw. Let gbe any formutla such that v = ¢ ¢, so that
uk= <A2q. By determinism-scheme, u ¥= (<A>q = | A ’.]q. Since u = <Ay, u o [A ’.]q, S0
w k= ¢. Hence vand wagree, in S, on all formulae, so [v] = w]. Therefore there is at most
one [v] such that [w]< A > [v]. The lemma can now be proved for arbitraty A-programs by an
casy induction on the length of programs. B

e

Lenmma 3.5: If ais an A-program and b is any program and [u[<a>,[+] and [u]<a.b> 4[],
then [v<>,[w].

Proof: 1f [t]{ a;b> 4[] then there is a [2] such that [ulka>,[2] and [2IKD> y[w]. By Lemma 3.4, it follows
from [u]<a>,{¥] and [1]<a> 2] that [y] = [z]. So [vI<b>4[w]. W

Definition: Given two programs a and b, we say that aand b are T-equivalent if and only if
<£I>T = <br e for all states u and v, ua? 7V iff udb? V-

Lemma 3.6: The program A B;is T-equivalent Lo the identity program A.

Prooft By identity-axiom, u I“—*S(A < Bl.>1rup. Hence there is a state w € U such that udA > w and
w= KBR e Henee there is a v such that w<B 2 v and udA B (. Now let v be any stite in
Usuch that t<A ;B> ov. 1.et g be any formula such that u = q. By identity-scheme,
ukE=gq— [4.B)q. SinccubEggubg [4,:B]la sovE¢q Henceu and v agree, in .S, on all
formulae, so [u] = [+]. Therefore, A5, is the identity program in the D L-collapsc of ., hence
alsoin 7.

Lemma 3.7: If aand b are A-programs and a is a permutation of b, then @ and b are T-equivalent.
Proof: By an induction on the length of @ and b, using 4A-scheme. 8

Lemma 3.8: 1f ais an AB-program not containing 4, then @;B;and B a are T-cquivalent.

Proof: By an induction on the length of @, using A B-axiom. BB-axiom, AB-scheme, and Bl)-scﬁmne. i

Lemma 3.9: 1f a is an A B program not containing A, or B8 and il [u]<a¥,[v], then [u] = R ifand only
if[v] =, R.

Prooft By an induction on the length of @, using R-axiom. i
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Definition: An AB program a is nonnegative if and only if every prefix of @ contains at least as many
Ajsas Bis, forl <i<5

Lemma 3.10: Every nonnegative AB-program is T-cquivalent to an A-program. §

Proofi 1f ais a nonnegative AB-program, then « is 7-cquivalent to b4 c; B;.d where band c are
(possibly trivial) A-programs, ¢ contains no A’s, and dis an AB-program. By Lemma 3.8, ais
T-cquivalent to b:4; B icid, and by Lemma 3.6, ais T-cquivalent Lo b;c;d, which is nonnegative
and contains onc less 53, than a. 'The lemma follows by an easy induction en the number of Bj‘s
inal

Lemma 3.11: If the AB-program a is not nonnegative, then there is no [u] such that [u; Ka> ,[u].

Proof: If ais not nonnegative, then ais eqivalent to b: B;¢ where b and ¢ are AB-programs such that b
contains no A;s. By Lemma 3.8, ais T-equivalent to B bie. Since u,, F= ¢ zero, there can be
no usuch that u,, < B> qu, hence no usuch that u_, < ar ¢, since a is T-equivalent to B;bic.
Hence there is no [i] such that [u,, [<a>[u]. B

For the rest of the proof of Proposition 3.1, we will use , v, w, . . . to denote clements of V, since we no
longer need to make use of the fact that clements of V arc cquivalence classes of elements of U, Let

: / =
U, be that clement of Vsuch that u,, =, zero.

Lemma 3.12: For all u € V, there is at most one x such that Uy, A prog(x)? 4u.

Proof: Suppose x # y,but u_<prog(x)> uand u_, _<prog(y)»u. Without loss of generality we can
1 zero 1

zZero
suppose that x, > y|. pmg(y);lj’le is not nonnegative, so by Lenuna 3.11. there is no v such that
< prog(y); B, 1> v, hence no v such that ug le]>7“" Thercfore u k=.[ B, " |fulse.

prog(x). B 1X1 is, by Lemmas 3.8 and 3.6, T-equivalent to prog(z) for some z. By Lemma 3.3,
<pmg{x);81'rl> W By Lemma

3.5, us le1> ;. Hence u i=.1.<81x1>frue, a contradiction. So x # yis not possible.

there isa wsuch thatu,, < prog(z)> wand hence such that u sl

7 2 . . = 3 5 3
We now prove that the relation between a state u € ¥ and a vector x defined by Uy, prog(x)> pu is the
desired bijection.

Lemina 3.13: There is a bijection @: ¥V — N? such that @(u) = xifand only if u,,, <prog(x)»u.

Proof: Let u € V. Since T'is an a-cut, there is an AB-program a such that Uy la?qu. By Lemma 3.11,
amust be nonncgative. By Lemma 3.10, ais T-cquivalent to some A-program b, which, by
Lemma 3.7, is T-cquivalent to prog(x) for some x. By Lemima 3.12, x is unique, so we may
define (u) = x. To show that ¢ is an injection, suppose that p(u) = ¢(v) = x. By the
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definition of @, u_, <prog(x)>uand u,,, <prog(x)>;v. By Lemma 3.4, u = v. To show that ¢

Zero 2010
is a surjection, let x € N3. By Lemma 3.3, there is a u such that U0 PFOZ(X) P,

sop(u) = x. 1

Finally, we will show that @ makes T a grid, by proving that the three defining propertics of grids hold
of T'and ¢.
(1) Suppose u<A 2 v. 'I‘hcn'uz(_,_t}(pmg(fp(u)»).u and “zero<pmé”(¢(“)):’41> V- By Lenima 3.7
uz{qv(pmg(af{t;?(u))))Tv. By Lemma 3.13, @(v) = al(cp(u)). ‘
Conversely, suppose @(v) = o (@(u)). Then Uy PPOS( P W) uand u, < roglo [of )Y v. By
Lemma3.7.u,, < progle(u)); A:') v By Lemma 3.5, u< Ai>7‘v'
(2) Without loss of generality let i = 1. Suppose u< B, >,» where g(u) = xand @(v) = ». Then
Uy $PTOLLX) B> v, By Lemma 3.8, uO<,-fixl;Ij’i;/szz;,d3x3;/l4x4;A5X5>.]v. By axiom,
Uy, = (B Vatlse, 50 x> 0. By Lemma 3.6, u,, <4, L 4,%2 4% 4,54 AKSY v, Therefore
x = @(u) = o)(p(v) = o,
Conversely, suppose g(u) = o,(p(v)) = o,(x). Thenu,, < prog(e (x> uand u, ero \PTOZ(X) V.
s b L IZBI;¢42x2;/f3x3;A4x4',A5x5>TV. By Lemma 3.8,

uzew<prog{ al(x)); B> v. By Lemma 3.5, us Byr .

zZero
. By Lemma 3.6, u

(3) Suppose u = R and @(u); = @(v),. Let p(u) = x, e(v) = y. Then u,,, <prog(x)>uand
A Alxl;AzyZ;A3y3;A4y‘4; A5y5>,1,v. By Lemmas 3.6 and 3.8,
R X n X p X5 g VY g V3 g Ve g P ,
Uy $PTOg(X), By 2By 3B, 74, B35 A4, 24,3, 4,4, 45 5>,v. By Lemma 3.5,
U By "2 B3, B, 4 B A1 034,74 4055 . By Lemma 3.9, v = R. This completes the
proof of Proposition 3.1. 8

Corollary 3.14: If a contains all primitive programs appearing in a formula p, then p is valid in all grids

PDL

if and only if grid—schemeQ infers p.

Proof: By definition, grid-schemeQP DL infers p if and only if p is valid in all structures in which grid-
schemeQP DL is valid. By Lemma 2.1, the latter is true if and only if p is valid in all PDL-
collapses of structures in which grr'd—.schemeQP DL is valid. By Corollary 2.3, thisis so if and only
if p is valid in all a-cuts of PDL-collapses of structures in which grid-schemeQP B

Proposition 3.1, this is so if and only if p is valid in all grids. §

is valid. By

Notation: Let a* abbreviate (4, U 4, U 4, U 4,U AU B U B,U By U B, U By~

Corollary 3.15: 1f pis a formula all of whose atomic programs arc in a, then p is valid in all grids ifand
only if ([a*]grid~scheme)QPD Limplics p.

Proof: 1.ceft to the reader. il
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4 11,"-completeness of the Deducibility Problem for PDL

Lemmad.l:1.ct £ 2V x N¥ = N be apartial recursive function of one set variable and three integer
variables. There isa D1 program uj.such that, in cvery grid .S, u‘(aj>5v if and only if
e} = AX . @lu) . plu)y, @(u),). where X¢= {p(w), | Wk R}
Proof: An oracle counter machine is a computing device possessing registers capable of holding
arbitrary nonnegative integers and a processor capable of incrementing and decrementing
~ (when the result is nonnegative) the contents of a specified register, testing whether the contents
of a specified register is zero or not, and testing the contents of the first register for membership

in a fixed but arbitrary sct called the "oracle”. (The formal definition is analogous to that of

oracle Turing machines [5, 6] and is omitted.) A S-counter machine is capable of computing
any partial recursive function of one sct variable and three integer variables, where we assume
that the three inputs are initially stored in the first three registers (the extra two registers are for
temporary results and may initially contain arbitrary values) and that the single integer output is
stored, at the end, in the first register. A program asto compu te such a function fcan be written

as a regular program using the primitives (where 1 < i < 5): A; to increment register i, B;to
decrement register 7, zero? and T1zero? to test register i for zero, and R? and TIR? to test
whether the contents of register 1 is in the oracle set X¢. Ina grid S the standard PDL
semantics interprets asas a program which computes f; i.c. that u<aJ,>Sv ifand only if @(v); =
g 9(1) plu)y, plu)y). 8 -

IFor the remainder of this paper et Y be a fixed Tl l]-cumplctc set of natural numbers, so that thercis a
fixed recursive function X, x, y, z) of one sct variable and three integer variables such that
K= {x| X C N 3p.Vz 02 —10)

Corollary 4.2: Thereis a PDI. formula py such that for all natural numbers m, the formula
zero| = <A">py is valid in all grids if and only if m € Y.

Proaf: By the preceding lemma, for all grids S and states u, u F= ¢ <f1‘/>zero1 if and only if
AX ¢ @Q). @)y, plu);) = 0. The program B*, A is capable of arbitrarily altering the
conteats of the i register. Hence = [BJ*;A3*]<(IJ>Z€I’()I if and only if
Vz €N AX plu)). glu)y, 2) = 0. Similarly, u l==S<]32*;/12*>[B3*:Af](a}zerol if and only
if3y € NVzEN AXq o)y, 1. 2) = 0. Let pybe <By* 4, B *;A}*]<af>zerol.

Ifulk=g zeroy, then b= o <t ™py ifand only if 3y € N. V2 € N.fXemy2)=0. AsS
ranges over all grids, X ¢ ranges over all scts of nonncgative integers. Therefore, zero) —>

<A™ pyis valid in all grids ifand only if YXC M. 3y € N.VZ € N. flX, m, y, z) = 0, i.c.ifand
onlyifm€ Y. |

Proposition 4.3: 'I'he scheme inference (respectively, implication) problem for PD/, is T1 ll-completc.




13

Proof. By Corollaries 3.14 (3.15) and 4.2, there is a D1 formula p . such that m € Yitand only if grid-
schemegpm‘ infers (implies) zero, — <A1m>1’)‘ This proves that Tl l' is many-onc reducible to
the scheme inference (implication) problem for PDI.. Itis not hard to show that cither problem
isin ﬂl]; wc omit the proof. 1§

We now define some sublanguages of PD1. and show that the scheme implication and inference
problems are I1 ll-curnplctc for some of these sublanguages.

Definition: The formulac of test-fice propositional dynamic logic are those in whicl no tests appear; the
formulac of atomic test prop ssitional dynamic logic are those in which the construction p?

appears only when p is an atomic proposition.

Theorem 4.4: 1 1. is a subset of 2D/, which contains atomic-test-PD1.. then the scheine implication
problem for L is T1 11-c01nplctc.

Proof: 'The non-atomic tests of p yare of the form zeror.?. ﬂzeml.?, and —1R?. Choose new atomic
propositions Z, N, and M. Let g, be the result of substituting Z ? for zero2, N2 for —zero}),
and M? for T RY in py. Let equiv-scheme be grid-scheme & [a*(Z, <> zero, & ... & M <
—1R). We leave it to the reader to show that the problem of deciding, for a given m, whether or
not equiv-schemegl‘ implies zero, = <A,™qy is 1,-complete.

Definition: The set of programs, I1 , and the set of formulac, ® , of deterministic propositional dynamic
logic (PP D) arc defined inductively as follows.

ng; (HN,CMandd, A€,

(2)Ifa, b€ 11 and p € &, then (a;b), (if p then a else b), (while pdoa) € 11,
o (He,C2,

() Ifp, g€ ® ythen 1, p&qg € @,

(3 Ifa€ N andp € fbdthcn<a>p€ ®,

Proposition 4.5: If L is a subset of PDL. which contains DPDL, then the scheme inference problem for
LisIl llﬁcomplete.

Proof: First, note that afuf Lemma 4.1 can casily be written as a program in I, Sccond, note that for
all programs a and formulae p, <a*>p is equivalent to <while 7 p do a>true. Hence, there isa
formula ry in 11 which is equivalent to p, :(i,( Is’z*:/12*)[83*;/lj*]<aj>z<’rol. Finally, note that
cvery conjunct of grid-scheme is in 11 jexeept for zero-axiom = -!f'< B *:By* B B> B*D zero.
There is a formula in 1, which is equivalent to zero-axion in all structures; let det-scheme be
grid-scheme with zero-axiom replaced by this formula. We leave it to the reader to show that

the problem of deciding, for a given m, whether or not dm-.s'c'lu-mz'o’ “infers zero, — <A,">r is
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Il ll-cumplctc. |

Definition: The formulae of atomic-test-DP DI are those in which the constructions if' p then a else b
and while p do a appear only when p is an atomic proposition.

Theorem 4.6: 1f 1. is a subset of 2D 1. which contains atomic-test-DPDI., then the scheme inference

problem for L is I'll‘-cnmplete.

Proof: | et det-scheme and gy be as in the proof of Proposition 4.5. Replace their non-atomic tests by
new atomic tests as in the proof of Theorem 4.4. (This replacement must be performed

recursively on nested tests.) #

5 Conclusions and Open Problems

Because of its many decidable propertics, PD1. appears to be a reasonably tractable extension of
propositional logic. However, we have revealed a dramatic contrast between PD L and ordinary
propositional logic in the case of the scheme deducibility problem, which is ﬂll-complcte for PDL,
but decidable for propositional logic.

An important hint at the power of PDL axiom schemes was provided by the observation of Mirkowska
and Pratt [2]. who showed that the nonnegative integers could be characterized (as cuts of PDL-
collapsed structures) by a finite set of axiom schemes. Hence this set of axiom schemes does not satisfy
the finite model property, namely these schemes have a model but no finite model. Since all the
previously known decidability results for 2D/ ultimately rest on the finite model property of PDL
formulac, the Mirkowska-Pratt observation helps clarify the contrast between schemes and finite sets

of axioms.

However, violation of the finite model property should not be taken as prima facie evidence of
undecidability. IFor example, Mirkowska has obscrved that the nonnegative integers can also be
uniquely characterized by a single formula of D1. extended with a looping predicate and the converse
operation on programs [3]. Nevertheless, by extending the results of [7], Streett can show that this
extension of PD1. is still decidable (in fact, clementary recursive). This result will appear in a later

paper.

Ihe degrees of undecidability (or decidability) of several restricted deducibility problems remain open

questions.
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Open-Problem: Arc the scheme implication and inference problems for test-free-PDI. Tl l‘-cumplctc?
Open Problent: 1s the scheme implication problem for DPDL or atomic-test-DPDL T ll-cmnplctc?

Open Problen: How hard are the scheme deducibility problems for propositional temporal and modal
logics?

Acknowledgemenr: We are grateful to A. Salwicki for pointing out the possibility of characterizing the
integers by PDI. axiom schemes, and for several useful discussions about these
results.
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