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1. INTRODUCTION

For various reasons, the information contained in a real world data base is usﬁally
incomplete. This creates a need for developing methods to handle situations where a
data base does not contain all information a user would like to know.

This paper follows a previous paper of the author [11], where a simple mathematical
model of a data base with incomplete information was introduced. This model, called
an information system (or just system), is based on attributes whici1 can take values in
specified attribute domains. Information incompleteness means that instead of having a
single value of an attribute, we have a subset of the attribute domain, which represents
our knowledge that the actual value lis one of the values in this subset, though we do
not know which one. This extends the idea of Codd’s null value [2}, corresponding to
the case where this subset is the whole attribute domain. A simple query language to
communicat;: with an information system was also described in [11}. This language
includes two kinds of queries, ferms and formulas ("yes-no" queries). The expected
response to a term is a list of objects with the property expressed by the term, while the
response to a formula is a truth value, T (tru_th) or F (falsity). It was shown in [11]
that when the information is incomplete the same query can be interpreted in many
different ways, and to understand those differences two basic interpretations of a query
were introduced, the external one and the internal one. The external interpretation
refers the queries directly to the real world modeled in an incomplete way by the
system, so that the external interpretation of a term ¢ is the set of objects which in

reality have property t. Of course, the information contained in the system is, in
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general, not sufficient to exactly determine this set. However, in [11] we give methods

to compute the best possible bounds on the external interpretation of r logically
derivable from the system, i.e.

(i)  lirle,  the set of objects for which we can conclude, from the information
available in the sfstem, that they are in the external interpretation of ¢, and

(ii) eli®, the set of objects for which we cannot rule out the possibility of
belonging to the external interpretation of 1. |

In contrast to the external interpretation, the internal one refers the queries to the
system’s information about the real world, rather than to the world itself, so that the
internal interpretation of a term f is the set of objects for which the information
contained in the system satisfies the conditions expressed by 1.

Although in the present paper we deal almost exclusively with internal interpretation
(so that the word "internal” will sometimes be omitted), the results obtained provide
solutions to some problems concerning the external interpretation which were left open
in [11]. The paper is organized as follows. In Section 2 we give basic definitions and we
survey those results of [11] which we shall need here. In Section 3 we precisely define
the internal interpretation of queries, and we investigate its basic properties. Then, in
Section 4, we give an axiom system for equivalent (with respect to the internal
interpretation) transformation of terms. The technique of equivalent transformation of
terms is then used as a basic tool in an algorithm for computing the internal
intérpretation of an arbitrary term in an arbitrary system. We also prove that our

axiom system is complete in the usual logical sense, and we explain the relation of the



-4-

notion of a tbpological Boolean algebra to our semantics of terms. Then, in Section 5,
we consider a sublanguage which seems to be interesting from the practical point of
view. Determining the interpretation of a query in this sublanguage is much easier than
in the general case. In particular, we are able to find the interpretation of any formula
(which we were not able to do for the general language). Our method of computing the
interpretation of an arbitrary formula in the sublanguage, which is described in Section
6, has a combinatorial flavor, and is related to the classical problem of distinct
representatives of subsets [4). In Section 7 we discuss some alternative approaches to

defining the semantics of queries.




2. BASIC NOTIONS

In this section we give some basic definitions which we shall need in the rest of the
paper. Some of them coincide with those in [11], where the reader is referred for more
detail and motivation.

By an information system (or a system for short) we shall mean a triple

L = X (D)jep O

where
@) X is a finite set of objects,
(ii) I is a finite set of attributes,
(iii) D is a nonempty set called the domain of attribute i,
(iv) U is a function which associates with every attribute / and every a e

D; aset U(i,a) c X, such that for every i e [

Utta: aeby=x ‘ m

Intentionally, U(i,a) is the set of objects for which attribute / possibly takes value a.
According to this interpretation, we can determine, for every x € X, and every { € I, the

set

Bi(x) ={ae Dy x e UG,a)} 2)
of all possible values attribute i can take for object x. Conversely, U can be obtained
from fun.ctions Bp i € 1, by the formula

Ui ={xe X: ae B{(x)}. (3)
We shall always assume that the set X of oﬁjects, the set I of attributes and the

attribute domains Dy, i € I are fixed, and we shall often represent a system by functions




Bpiel rather than by U.A

Notice that a system represented by 8;, i € J may be treated as a relational model
[1] with only one relation. . However, in our case this relation consists of tuples
(AysesAp where each A4; is a subset of D; rather than an element of D; (4;= B;(x)).

For two systems A = (X.(Dp;er Ups and A = (X,(Dp);cpUs) we say that /4 is an
extension of A ~ (in symbols A <X A, or AE A) if

Uy(i,a) ¢ Uy(ia), for all i ¢ Tand a € Dy 4)
or équivalently,
| BAx) ¢ Bl forallic Jand x e X, - (5
whefe B,-l, ieland B,-Z, i € I correspond tO-Jf and A, respectively.

Intuitively, A < fz means that the knowledge represented in A is contained in
the knowledge represented in fi Of course, < is a partial order. A system is called
complete if U(i,a) n U(i,b) = # for all abe Dpa=b; equivalently, if BA(x) consists of
a single value for all i € I, x € X. For a theory of complete systems see [14]. A
complete extension is called a completion.

Our query language consists of rerms and formulas, Terms are built up from
certain elementary parts called descriptors, and from constants 0, 1 by means of symbols
for Boolean operations =, +, + =, and a special unary operation ®. Every descriptor is
of the form (i,4), where i € I and 4 ¢ D; more exactly, 4 is in a fixed Boolean algebra
9 of subsets of D; Descriptors will be informally written as (LENGTH > 50, SEX =
M), (SAL < 10000), (COLOR = RED) or simply red, etc. An example of a term is

~((DEPT# = 2)«NAME = SMITH) + AL < 500000(AGE < 300).



The set of terms is denoted by 7,

Formulas are built up from atomic formulas ¢ = s, where 1,5 € J, and from logical
constants 7, F by means of logical connectives -, v, A, =, and a special (modal)
unary connective 0. Finite disjunctions and conjunctions are abbreviated as
W jed & j and M\ jeJ ¢ j; respectively; ~(s = s) is denoted by ¢ # 5. An example of an
(atomic) formula is (SEX = F)-=SAL > 10000) = 0. The set of all formulas is
denoted by .7 Intuitively, both @ and O mean "in every possible extension of our
present knowledge." A query (term or formula) is simple if it contains neither @ nor 0.

The interpretation of a query Qin a complete system 4 called the value of Qin A
and denoted by |IQl | or just |IQl, is defined in the natural way. We put

Kol = e gl = fx e X: B,0) < 4, (6)
and we interpret 0, 1, -, +, », » as g, X, and the set-theoretical operations of
complementation, union, intersection and the operation "(X \ 4) U B", respectively; for
formulas we define |Ir = sl| = T iff lifll = Jisll, and we interpret':’the logical connectives in
the natural way. Symbols @ and O are simply disregarded (there can be no proper
extension of a complete system). Two queries 0y and Q) are externally equivalent (in
symbols, 0y = Gy) if NGyl =1l , for every complete system .7 (here Dy ielare
fixed but X and U are arbitrary). In [11}, we gave an axiom system B for externally

equivalent transformation of queries, consisting of the following axiom groups:

Bl. Substitutions of terms into the axioms of Boolean algebra, and the axioms of

equality (see e.g. [15]).
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B2. The following axioms concerning descriptors:

() Gy =0, WD) =1,

(ii) Gdy + 6B = G,A U B,
(iii) GA) » B = (AN B,
(iv) G, A = D\ A,

forall i e I, and all ,Be &.
B3. Substitutions of formulas into the propositibnal calculus axioms.
B4. The axioms ®r=1 forevery fe J, and 0d =& forevery e 7

(In fact B4 is missing in [11}, where we consider only simple queries.) It can easily be
proved that the axiom system B is complete, ie. 0} o 0, iff @y can be transformed into
0, by using axioms in B. Our main task in this paper will be to generalize the
definition of the value of a query to arbitrary (not necessarily simple) queries and to
arbitrary (not necessarily complete) systems, and then to axiomatize. this extended
notion of value in the same way as the value of queries in complete systems is
axiomatized by the axiom system B. We begin this program by giving, in the next

section, a precise definition of the value QI , of an arbitrary query @ in an arbitrary

system ./
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3. INTERNAL INTERPRETATION OF QUERIES

Before introducing the formal deﬁnitioh of I pfor arbitrary @ and A let us first
give some intuitions connected with it. Our definition is based on a consistent approach
where any query Q is interpreted as expressing an internal (with respect to the data
base) property of objects (if Q is a term) or a property of the data base as a whole (if
@ is a formula); in other words, a term or formula expresses some conditions on the
information available about an object or about the whole collection of objects,
respectively. Any descriptor (i,4) will be understood as "known to have the value of
attribute / in 4," and the symbols -, +, +, will be interpreted as the usual set-theoretical
operations of complementation, union and intersection, respectively, exactly in the same
way as in the case of complete information. Notice that, in particular, the
interpretation of red + blue is "known to be red or known to be blue" (rather than
"known to be [red or blue]"); similarly, ~red is interpreted as "not known to be red"
(rather than "known not to be red").
| The interpretation of @r will be, roughly speaking, the set of all objects nor only
having (internal) property t now, but also in every — not necessarily complete —
conceivable extension of our present knowledge. The interpretation of O® is similar — it
is T if and only if the assertion expressed by &, concerning the information on our
collection of objects, is bound to remain true in every possible extension of our preéent
knowledge. It should be emphasized that our interpretation of queries is intended for a
user who is fully aware of the fact that the information available in the system may be

incomplete, and who may explicitly refer to this incompleteness in his queries (by using
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@ and O).

Definition 3.1. Let /= (X,(D);cpUd be an arbitrary query. The value of @ in %

denoted by QN » (or HQIl when 7 is understood), is defined inductively as follows:

@) Wil = {x € X: Bx) ¢ 4),
(ii) iol=g, =24,
(iii) fi=ell = X\ liell,
(iv) e + sih = liel U Ust,
(v) e« sil = Helk 0 sy
(vi) e » sit = (X \ liel) U Ui,
(vii) @ = {xe X: forevery /' > 4 xelfl f.}
=) v,
S
(viii) iFi=F IN=T,
{ T if lell = lish
. (ix) e = sl = :
. F otherwise
(x) =®H = =li®l,
(xi) eVl = ielviwi,
(xii) IeAEN = IRIAIET,
(xiii) $=2>Wil = -IUVIEH,

T if IIQH/-= T for every S/ > S

(xiv) Hodl ={
4 F otherwise
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= inf {Ioll_p: S = A,

(inf refers to the natural ordering F < T).
It will be convenient to denote —-m-¢ by ¢, for any term ¢, and ~O-® by ©®, for
any formula . ¢r and ¢$ have a natural interpretation, given by the following

theorem.

THEOREM 3.1. (a) For any term r and any system ./

el »= {xe X: forsome /' > £ xe¢ llrllf.}

= U ﬂfﬂ/;

=S
(b) For any formula ¢ and any system ./

T if for some /' > £ Ilﬂfa= T

F otherwise

HOQH/ B {

= sup {I8l_p: " = S},

Proof.

@ horl o = -l o = X\ [V o= X\ Y X\ i)
P f P S

xna\Umpy = Y,
et SeS

= {x e X: for some f’t.),"xelitllff}- |

(b) "0@"{/ = I"‘D"“l@l“f = "'I"[]"\QHf



A2

- iﬂf‘““"‘@ﬂfﬁ b & t L/} = -y Sup{'|§||f13 I t -/}
sup {I®ll_pn S = S}

1

T if for some /' > 1 ﬂﬂ/.=
{ F otherwise
O

It should be emphasized that in Theorem 3.1 as well as in Definition 3.1 (vii) and
(xiv) /' is not assumed to be complete. If an operation @ were defined to be like @,
except that "for every /" > /" is replaced by "for every complete ./’ = /" then
@ and @ would not coincide. We have, for instance, §@'((SEX = M) + SEX = P)ii =
X, since in every completion /' of & WSEX =M + SEX = Pl ,. = il . = X.

On the other hand, if the value of SEX for an object x is not known in £ then
x ¢ ISEX = M) + (SEX = Bl P IKSEX = M| P ISEX = B)ii P

and consequently x ¢ NE(SEX = M) +SEX = F)il », (notice that one of the
extensions of .7 is ./ itself). We shall see in the next theorem that & can be
expressed by ©6.

THEOREM 3.2. For any system £ any term ¢, and any formula

(a) izell , = {x € X: for every completion /" of A4 x € il f,},
(b) loarl » = {x e X: for some completion /" of A x e |l b
T if for every completion / of " I8l o= T
(©) ool =
F otherwise
T if there is a completion /~ of ./ with I®ll . = T
@  Ioodl, = |
F otherwise.
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Proof. The theorem follows from the structure of the partial order =<, mbre
specifically, from the fact that for any ./ there is a méximal element (ie. a complete
system) ./ > ./ Let a(.”") be an arbitrary assertion with variable ./ ranging over
systéms, which for any particular ./ may be either true or false. Then

@ vST=2ES =) o)
is equivalent to

(i)  for every complete /" > £ a(/).
Indeed, (i) implies

(for every complete /* > /) 3 /" > /) a(S"),

which is equivalent to (ii), since for complete ./ the only /" > /' is S itself.
Conversely, assume that (ii) holds. Then, by the structure of <, for every /' > ./
there is at least one complete ./* > /", But /" = 4 hence by (ii), a(./") is true,
which means that (i) holds. Taking a(.”) to be x ¢ Jifl » We obtain

X e IIE]@!{IJ) e VS >S) xe li@tlff.

o VS>> )xe el _pe
« for every complete /' > £ x ¢ |ifll P
which proves (a). Similarly, taking a(./) to be |i®| | o= T we have
I00%l p=T & (V£ > A) @S = /) 18l pn=
| « for every complete /' > £ |i&l =T
which proves (c).

(b) We have

Il@Eltﬂ'fn = H-E—Eltﬂf = ||-E-E- —fl|f= H—IEIO"II!ff* X \ "Elé-fuf
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Hence, by (a),
x e llomrl , & x ¢ o= , |
e - (for every complete /" > 4 x ¢ -l )
e for some complete /' > £ xe¢ el po .
Similarly, 10081 = ~ 100~#l, and we obtain (d) from (b). O
Two queries @y, @ are said to be infernally equivalent (in symbols, Qy % Oy)
if 1Q11 =GN for every sjrstem / (as in the definition of external equivalence,
D;, i € I are fixed, but X and U are arbitrary). It follows trivially from the definition
that the internal equivalence is stronger than external, ie. Q) ¥ @, implies 0y . Qz.
OF course the converse implication does not hold. For instance, Gid) + B = (A U By

but in general (if 4 = AU B = B) Gd + G,B %A U ). Indecd,
Wid + GBI = WGAUBI = {xe X Bfx) c AU B),

and a subset of A U B need not be a subset of either A or B. Another example is the
equality —(i,4) = (i,D; \ A which is of course true under the external equivalence, and

is not true (except for trivial cases) under the internal equivalence:

-G = X\ WA = X\ {xe X: Bix) c 4)
= {x € X: Bx) n (D;\ 4) = 7},
while

IGD;\ Al = {x € X: B(x) c D\ A).

Putting these examples into more concrete terms, SEX = M) + SEX = F) is
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interpreted as the set of persons whose sex is known, while (SEX,{M,F}) as the whole set
X of persons; similarly, ~(SEX = M) is interpreted as the set of persons who are not
known to be men, while (SEX = M) as the set — in general smaller — of persons

known not to be men (i.e., known to be women).




-16 -
. 4. AXIOMS FOR INTERNAL INTERPRETATION OF TERMS

So far we know exactly what is the internal interpretation of a query (see Def. 3.1),
but we do not know how fo compute it. In this section we shall develop a method for
evaluating the value of an arbitrary term in an arbitrary system (formulas will be
treated in the next section where we give simple algorithms for determining the internal
interpretation for queries of a special type).

Our method of computing Kl » will be based on transforming ¢ into some
equivalent term for which determining [I-} 7 is easy. The transformation process will
be based on a set of axioms which completely axiomatize the internal equivalence, in the
same sense as the axiom system B completely axiomatizes the external equivalence.

In order to develop our axiom system, we shall need some facts about topological

Boolean algebras.

Definition 4.1. A topological Boolean algebra (TBA for short) is an algebra
(Bv 5% ™y I 0. l)
such that (B, +, +, », =, 0, 1) isa Boolean algebra and X is a unary operation with the

following properties

@) L(ab) = TeTb
(ii) Ia<a
(iii) Ila = a

(iv) It=1
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for all a,b € B (a < b abbreviates b = g).

An example of a TBA is the Boolean algebra of subsets of a topological space with
the operation of taking interior as I. A thorough study of TBAs, as well as the
explanation of the elementary topological notions used here, can be found in Rasiowa
and Sikorski [15]. The next lemma gives an example of a TBA which will blay an

important role in our considerations.

LEMMA 4.1. Let (2, <) be a partially ordered set. For all ABc & let
Id={xe 2 foreireryyzx, y € 4}, )
A=B=(2Z\ A)u B,

-A= 2"\ A
Then
( AZ)un =, -1, Z),

(where 7(.2") denotes the set of all subsets of 2" ) is a TBA.,

Proof. Tt is sufficient to show that the operation I defined by (7) satisfies

conditions (i) through (iv) of Definition 4.1,

@) KAnB) ={xe Z: (Yp2x) yedn B

xe 2 (Vy20)p2Anixe 2 Vy2x)peh
I4 n IB.

(i), II4d ={xe 2: Vy2x)(Vz3y) ze A

={xe Z: (VZZx)ZeA}=H.
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(ii) and (iv) are left to the reader. 0O
Notice that the example provided by this lemma is a special case of the
before-mentioned general example based on a topological space. Indeed, (7) defines a
topological interior operation, end hence endows 2 with the structure of a topological
space. It may be noted that the subsets
e Z: pyox, xe &
form a basis of this topological space.
Similarly as I behaves as a topological interior operation, the operation C, defined by
Ca = -I-q,
can easily be shown to have the properties of a topological closure operation:
C(a+ b) =Ca + Ch
CCa = Cq,
a< Ca,
c0=0.
The role of TBAs in the internal interpretation of terms is analogous to that of
Boolean algebras in the external interpretation. The analogy is that we can perform
“internally equivalent transformations of terms using the axioms of TBA, more exactly,

the axioms listed below.

AXIOMS FOR TERMS UNDER INTERNAL INTERP_RETAT‘ON. The set TB of

axioms consists of:

TBI1. Substitutions of terms into the axioms of TBA, i.., axioms of Boolean algebra
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and
3] B(r-5) = Br-Bs
(ii) rE = @t
(iii) EE = @
(iv) @l =1

TB2. The following axioms concerning descriptors:

(v) h2) =0
(vi) (f,.Di) =1
(vii) LGB = AN B

for all i e I, A,Be A.

TB3. The axiom
k ) .
(viii) o} =1 (—(zp,Ap) + qgl (lp,BZ))

szl Zqﬂl (i (D; \AP)UB?

for every positive integer &, every sequence of positive integers s .y Ny, €VErY Sequence
of distinct attributes iy, ..., i and 4 i3 ,B,f’ ﬁ,’f 1<p<k

The last axiom is fairly comphcated but its role mll hopefully become clear later,
when we define the weak multiplicative nurmal form (see Def. 4.2).
Before proving that the axiom set TB properly axiomatize the internal interpretation

of terms, we shall give an intuitive explanation why the notion of a TBA is relevant in
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the context of internal interpretation, more exactly, why transforming terms according
to the axioms of TBA preserves internal equivalence. To this end we consider the

partially ordered set (%", <), where &  is the set of all systems with fixed X and
(D) jcr This partially ordered set defines a2 TBA

o =(?('%ﬂ)!uvn'”!""1’5’ Q"), - (8)
see Lemma 4.1. For any x e Xand r e 7 lét
L={Se 2:xe el o} )

It. will be proved (see the proof of Theorem 4.1) that f,. preserves all TBA operations,
ie. £,(80) = If (), £t + ) = f,() U f,(s), etc. This means that, loosely speaking, the
symbols @, +,... can be interpreted as operations in some TBA. Using this fact one can
easily prove that if ¢ = s can be derived from the axioms of TBA then f,(¢) = f,(s) fpr
every x € X, and consequently l7ll f.= lisll o for every £ ie. ¢ g S

Let us formulate and prove it more precisely. We shall write ¢ = s if 7-can be

TB

transformed into s by using the axioms in TB. Obviously, = is an equivalence relation
on the set 7. '
THEOREM 4.1 (Adequacy of the axiom system TB)

For any terms ¢, s

t = s implies 1=s
TB P i

Proof. Tt is sufficient to prove that if 7 = ¢ is an axiom in TB then ¢ % 8. To this



-21-

end, let us consider the partially ordered set (Z, <) of all systems with fixed X aﬁd
(D))jcp ordered by the relation of extension. The set P(Z ) of all subsets of 2",
together with the usual set-theoretical operations and the operation I defined for every
Ac Z by
X4 =.{-/’e Z: forevery S = £ S e A,
defines a TBA .7, see (8). For any x € X, let the mapping
i T AZ)

be defined by (9). The mapping Jy has the following properties:

Flt+5) = fi (DU f(s)
Fi(rs) = £ D) n fi(s)
1+ 8) = £ = f(9)
fi=0 = -f (0

f0)
(1)
@) = If,()

z

[l

.
2

We shall prove the first and the tast property. The other are left to the reader.

Hlit+s) = {Le D ixe e+ sll o}
={eZixe el oV x < lisl g}
= {/E 5?1: X € “f"/} ) {fe é?”:xe HS“/}
= £ D) U £,(5).
@an = {Fe2:xe i@
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[Fe Z:(v S = L)xellp)

(e Z:(W S = L) S e f(0)
If, (0.

Let r = s be an axiom of group TB2, ie. a substitution of terms into an axiom of
TBA. Since this axiom holds true in 4, we infer from the properties of f,. that f,(1) =
Jx(s) for every x € X. We illustrate this for axioms (s + r) = fs + t-r and B(ts) =
Be-Els: l‘

Felts + 1) = £ 0 (£ U ()
= () n DV F D n fi(r) = filees + ¢r)
[@@s)) = I(f () N £ = L) N Lf () = f(@ras)

Now we shall prove the same for axioms of group TB2. As (v) and (vi) are trivial,

we shall restrict ourselves to (vii):

L(G0B) = {S e Z:x e WpdUBI o}

(£ e & x el o0 16D}
= {Se Z:B{x) c AN B{X) c B
= {Se Z: Bi(x) c An B
= {Se Zixelidn Bl s} = f (AN B).

(here B;, i € I denote the functions uniquely corresponding to L.

The last axiom to consider is (viii). This is the most difficult part of the theorem.

(e E;:l [ ~tipdp + ):;’gl ipBP D
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={SeZ:(W S = L) xe U[’;l [H—(ip,dp)!!fr V) U;Ql ll(fp,Bg)llf-]}

(£« &S 2 7)) @p) [ 2 ¢ Winddl o v B9) x € KipBPI o1,

Taking into account that

x ¢ Wipdpll o & ~(d, ¢ B,-p(x))

Xe H(ip,Bg)l] PR B,-p(x) c Bg |
(B;y i € I correspond to .#°), and using (5), we obtain

f(m ):;;1 [~ipdp + L2y <inBD1)

& (for all nonempty Zy ¢ B,-l(x), vy L € B,-k(x)

@) [~(Zyc ) v Gg) Z, < B]]
= (3p) (for every nonempty Z ¢ Bip(x)) [Zc Ap =39 Z¢ Bz]

« (3p) (for every nonempty Z ¢ B,-p(x) n AP) G Zc "3
= Gp) Go) 6, (®) n 4y < Bf

= (3p) Gg 3,'p(x) c (Djp\f‘p) U Bg
k n :
o xe Up_ﬂ Uz Iip(D; \AUEDI

k
7 [y Tl pBj, \ AVED)

To sum up, we have proved that for every axiom f = s in TB and for every x € X,
Si() = f,(s). But this means that for every such axiom, ¢ % 8. Indeed,

il p={xe X Sef))={xe X Se f(9))= lisll .
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Now the theorem follows from the fact that each time we use an axiom ¢ = s in the

transformation process, we replace an occurrence of ¢ by s in some term r. Since % s,
| i

this operation does not change the value of . O

Putting our proof into more algebraic terms, we may illustrate it by the following

commutative diagram:

> Z(X)

N

xeX 'ﬁf

where I] xeX < denotes the direct product of TBAs ., each <, being a copy of &/

= (-‘.?( c'?“), U, N, =, - I, 2, ‘%ﬁ), and where f= (fx)xeX' and

®a) ={xe X: fea,

for every @ = (a),.x Il oy % The theorem follows from the fact that f is a

homomorphism (i.e. it preserves all TBA operations) and that I xeX s is a TBA.

We shall prove in this section that the converse of Theorem 4.1 holds as well, which
means that the relations ¥ and = coincide (see Theorem 4.4).

B
Using Theorem 4.1 we can obtain some useful corollaries from the axioms in TB.

LEMMA 4.2.

(a) B¢, A) % (i, A

® BG4 5 GDNA
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(© B4 + o # (i Ap) :ls ipdp + ... + (i Ap
for arbitrary (not necessarily distinct) iy ooy g

(d) B(-hAp + ... + =GAp) ; GBD; \ (Apn..ndp)

© Bt Ap + .. + ~ipAp) T D \AD + . + D\ A
whenever iy - iy are pairwise distinct.

() otiA) % ~(.D\ A)

(g) o=(i,A) ? (i, A)

(h) QUi AP + .. + (g, Ap) i -(il,D,-l\ AI""-""'kDik\ Ap
whenever i, ..., i, are pairwise distinct.

(i) SUAD + .. + (idp) ¥ =hD;\ (41 U ... U 4p)

G) @(-(il,Ap-...--(:‘k,Ak)) ¥ =(ipyApo=tig, Ap

for arbitrary (not necessarily distinct) iy oy i

Proof. (a) through (e) correspond to some special cases of axiom (viii). For

instance,

@i, A) : (=i, A + (,2) 7 GD;\ A
(f) through (j) can be derived from (a) through (e). For instance,

@((fl,AI)n..'(fk,Ak)) T -E’—((il'Al)'°°"{ik’Ak))
= ‘—E](—(fI,Al) S —(ik,Ak)) ?3 —((il,Dil\ Al} + ..+ (fk,D,-k\ Ak))
= “"lrgil\ Al"---"“"k’Dik\ Ak" a

Now we are prepared to describe a method of determining the value of any term in
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any system. The main tool in our approach is a certain normal form for terms.
Definition 4.2. (i) A term is weakly coprimitive if it is of the form

k m
Lt (ligdy + Lo gey GipsBD) (10)

where the attributes i}, ..., iy are pairwise distinct.

(ii) A term is in weak multiplicative normal form (WMNF) if it is of the form

My

where all #;’s are weakly coprimitive.

Notice that any term in WMNF is simple. If we had axioms

~Giyd) = GD;\ A,

(i AY + B = (L AU B

then we would be able to transform (10) into

koo m
Lo Dy \Ap) U Ug=1 8

However, as we have already seen, these axioms are not Qalid under the internal
interpretation.

LEMMA 4.3. For anj simple term ¢ there is a term s in WMNF such that ¢ TxB s.
Proof. We shall describe an effective algorithm for transforming ¢ into an internally

equivalent term s in WMNF. By using the axioms of Boolean algebra we transform ¢

into a product of sums, each sum consisting of some number of descriptors or negations
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of descriptors. Each of these sums can be transformed into the form where descriptors

are grouped according to attributes, say
k T
Lpmt E78) ~pd) + T2y i B0) (11)
(iys s iy pairwise distinct). By De Morgan’s Law and axiom (vii) of group TB2,

m ) Ms . M
Z_,gl -(lp,A;) % —H,&l (tP,A;) i —up,ﬂ,gl A"}.

This enables us to transform (11) into a weakly coprimitive term, and consequently to

transform the whole term into WMNF. 0O
THEOREM 4.2. For any term ¢ there is a term s in WMNF such that l'l‘zB s.

Proof. First we shall describe how to eliminate @ from r. If 7 contains an @ then ¢
must contain a subterm of the form Ep with no @ occurring in p. By the previous
lemma, p can be transformed into a term in WMNF, say p’. But axiom (viii) enables us

to directly transform ©p’ into a term in WMNF. In this way the number of

~ occurrences of @ is decreased by one. By repeating the above procedure we ultimately

eliminate @ from r. Now it suffices to transform the resulting simple term into WMNF,
which is possible by the previous lemma. 0O

Let us notice that the proof of Theorem 4.2 provides an effective algorithm for
computing the value of any term in an arbitrary system. Indeed, in order to evaluate

Wil for a term 1 not containing @ we can directly apply Definition 3.1 ((i) through (vi)).

For general terms, we may give the following convenient formulation of our method of
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determining the internal interpretation.

THEOREM 4.3. For any term ¢ and any system £ x e lifli 7 if and only if after
transforming ¢ into WMNF, for every factor

Eﬁml (i + L2y UpBH) (12)

of this WMNF there is an attribute ip such that

B‘-p(x) ¢ 4p or for some g, B,-p(x) < Bz-

Proof. Follows directly from Definition 3.1 and from the fact that our process of
transforming into WMNF preserves internal equivalence. O

Example 4.1. Let ¢ be the following term:
—(AGE < 40)-@((SAL > 10000—(SAL > 20000» + SEX=F) + SEX=M))  (13)

This query asks for objects with the value of AGE not known to be less than 40 (it
may be known to be >40), which not only now but also in every possible extension of
our present knowledge have the following (internal) property: either the value of SAL is
known to be greater than 10000 and is not known to be greater than 20000 (it may be

known to be <20000), or the value of SEX is known. We transform ¢ into WMNF

' = ~(AGE < 40»B((SAL > 10000) + SEX = F) + SEX = M)
«(~(SAL > 20000) + (SEX = P) + SEX = M)))
= ~(AGE < 40-E(SAL > 10000 + SEX = F) + SEX = M)

@(-(SAL > 20000) + SEX =F) + SEX =M))
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? ~(AGE < 40)-(¢SAL > 10000) + (SEX = F) + SEX = M)

*(SAL < 20000 + (SEX = F) +SEX = M)

(It is easy to see that in this particular case 7 can be further transformed into
~(AGE < 40-(SAL IN (10000,20000 + SEX = F +SEX = M)). )

Now consider the following system:

object AGE SAL SEX

s O [0:) i
x {30} {20000} ¥
X3 (20) (15000,30000) FM]
Xy (3545 (150000 (FM}

By using Theorem 4.3, we obtain the value of (13):

el = g}

It may be noted that in some cases it is useful to exploit the fact that

=i, A) + (i,B TzB (A + EB)(~i, A + i, D)

(14)

for transforming every factor (12) of a WMNF ianto

Zﬁ,:l (~lipdy + L2 (ipdp N BD).
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In this way we can eliminate from (12) the summands (ip,Bz} with 4, N Bg = g.
By using the technique of transforming into WMNF we can prove the following

theorem. _
THEOREM 4.4 (Completeness of the axiom system TB)

For any terms 4 s

t=s implies (. =z s
i P TB

Proof. Assume that ¢ a: s, and transform (-t + s)«(~s + () into a term ~ in WMNF,

'-ﬁ; (=t + 5)*(=s + 7). We shall prove that r,ls:B 1. Indeed, otherwise » would contain a

factor r, say

Z:;l (~lipdp + Z;ﬂl (ipnBY)

with AP¢B;7, for 1 gp_<_k,lgqgnp—-—noticethatiprngthen, by (14),

~lipdp + (ip,Bg> 3 ~ligAp + 4 ,Apnﬁgv

'FB -(ip,Ap) - (ip,Ap) ﬁi 1.
Consider a system ./~ with B;(x) = D; for all i € I, x € X, and with a nonempfy set X

of objects. By axiom (viii) we get
k n, .
W, = 1y 2gly Up (B \4p U B ,

k k
o U Ut 16y @, o = Uy Uity 5=

since Ap ¢ Bg implies (D,-P\ AP)UBZ # D,-p. Let us fix an object x € X. By the
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definition of Irll o (see Def. 3.1 (vii)), there is a system ./ > ./ such that x ¢

el P and consequently x ¢ lirll P2 (lirt e lird Pl ). On the other hand, since ¢ %

s, we have 7] = lisll_ and

"rﬂ‘fr = (-t + s)e(~s + l)ﬂ/.
= ((X\ 1 _p) U lsh ) 0 (CX\ isil_p) U i 1)
=XnXx=X,

ie, xe lirl P2 This contradiction shows that » = 1 must hold. Hence we have

TB
¢ 'IFB tr TzB to(=1 + $)(=s + 1) TzB t(=1 + )
"i?B (1t + s)(=t + %) TzB t(s + (t-=0)) 'l?B ls.

Similarly s _x s, and consequently ¢+ = s O
Combining this result with Theorem 4.1 we see that the relations % and — coincide.
In some cases it may be convenient to use another axiom system based on ¢ as a
primitive operation (@ can be expressed as ~¢-). The reader may easily verify that a

(dual) complete axiom system TB* can be obtained from TB by replacing axioms (i)

through (iv) and (viii) by

i* Ot + 5) = ot + &5
(ii)* 1ror=t
(i) * OOl = &t

(iv)* ¢0=0
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Giiy* e ;f:l CipdpTI22y ~Gipy B))

k n
= I, 112, -6, B\ 4p U B
(with the same restrictions as in (viii)).

By using these axioms we can transform any term into weak additive normal form

(WANF), i.e. a sum of wéakly primitive terms of the form

H;l (VES | 2 )

i ip pairwise distinct). Computing the internal interpretation is then carried out
analogously as for WMNF.
Now we shall briefly discuss the internal interpretation of formulas. We shall not

give any general method of computing [I$}l | p — no such method is known to the
author.

A reader who is familiar with the Kripke models for the modal logic $4 (see Kripke
(8}, Fitting [3, Chapter 311) has undoubtely noticed the similarity between Definition 3.1
and the definition of truth value of a formula in a .Kripke model. An immediate
corollary from this similarity is that transforming formulas according to the axioms of
modal login S4 preserves internal equivalence. For a discussion of S4 the reader is
referred to [3,6,8,15]. Here we only note that TBAs play in S4 the same role as Boolean
algebras in the classical logic, i, an expression is an S4-tautology if and only if its
value is 1 in every TBA. An important difference between Definition 3.1 and a Kripke

model is that the latter can be based on an arbitrary partial order, while our partial
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order < (the relation of extension) has some specific properties, e.g., for .any .7 there is
a maximal element (complete system) .”’ > ./ This causes that there are formulas
which have value T in every system, yet which are not (substitutions of formulas into)
%tautologi&. Examples of such formulas are

00% = o0

00(3AY) & 003 A OO

o0($v¥) & o0d v oD¥
(® = ¥ abbreviates (& = ¥) A (¥ = &); see Theorem 3.2 for the intuition connected
with these formulas). Other universally vali.d formulas are in our case

O(r=0) & e1=0

O(t=0) & @r=0

o(r=0) ® @r=0

O(t=0) & o120
It is not known to the author whether all these formulas completely axiomatize the
internal equivalence of formulas (i.e. whether an analogon of Theorem 4.4 holds). While
the problem of a complete axiomatization of internal equivalence — as well as that of
evaluating i@l - for any & and .# — remain interesting logical open questions, it seems
that the method of determining the internal interpretation for formulas of a special kind
which we describe in the next section is quite sufficient for practical purposes.

Let us finally mention that our terms and formulas can be treated as respectively

the open and closed formulas of a certain monadic modal Predicate Calculus (see Lipski

[12).




o
5. INTERNAL INTERPRETATION: A SIMPLIFIED LANGUAGE

The internal interpretation of queries described in the preceding section, although
precisely defined, may be not intuitively clear for a user, especially a casual one. The
main reason for that seems to be the fact that the meaning of 'thé operation @ and the
connective O is less lucid than the meaning of the (fonhally more complicated)
operation ©¢ and connective 0O (see Theorem 3.2). A user, who is in most cases
interested just in deducing as much information about }eality as possible from
incomplete data, is likely to think of the system in terms of all completions of the
information available in the system, that is, all possibilities of how reality may turn out
to look like. On the other hand, in the definition of @/l and HO®| (see Def. 3.1 (vii)
and (xiv)) we take into consideration all extensions, not necessarily complete. Each such
extension may be thought of as an intermediate stage in a hypothetical process of
increasing the information contained in the system. What we do in the interpretation
described in the preceding section is — in a sense — indirectly defining (internal)
properties of objects (or of a system as a whole) by specifying properties of the possible
processes of increasing knowledge. It seems that such an expressive power may not be
necessary in a query language. With this in mind, we now propose a certain subclass of
queries as a basis for the query language.

Let us denote @o¢ by surely 1, for any term t. The set Jpo of special terms is
defined to be the least set .7 with the following two properties:

(i) 0,1 and every descriptor is in 7 ',

(i) =t, surely 1, (1 + 3), (), (t+5) arein J ' whenever f,5¢ J
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If we denote —surely—t by possibly t, then
possibly t 3 -Eo~ % O Ot 3 o]
and by Theorem 3.2, for any term ¢ we have

surely 1l = n{lltti P /" is a completion of ./}, (15)

lpossibly 1l » = {J (il y: 7" is a completion of /). (16)

Similarly, by introducing the abbreviations Surely ® for D0® and Pos:i%l! $ for
— Surely — & we define the set ) of special formulas to be the least set " with

the following two properties:
(i) T, F and every special atomic formula t=s (1,5 ¢ T are in T,
(ii) -~ &, Surely &, (3 V¥), (BA W), (B=>V¥) are is 7  whenever &, ¥ ¢ 7.

As before, Theorem 3.2 implies

ISurely #ll » = inf{I®ll p: S is a completion of ./} (17)

WPossibly 8l = sup{IB)_y: /" is a completion of £}  (18)
The following lemma gives some useful properties of surely.
LEMMA 5.1

(a) surely (4,4 T (i,A),

(b) surely —(i,A) % (6D; \ A,

(c) surely (r-5) ¥ surely t« surely s,

(d) if b s then surely t % surely s.

Proof. (a) By Lemma 4.2 (b),

surely id) = El-G- (i, A) * B-Gd)
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3 WD\ (D;\ A % Gy Dp.
(b) is proved similarly, by using Lemma 4.2 (a) and (b).

(c) By (15), in any system /" we have

Usurely (¢5)1 » = [Y{ies oz #" is a completion of /)

(Yo lsk i #” is a completion of 7}

it

n {ieh o /" is a completion of ./}

n[)thsh y: " ia a completion of /)

]

lsurely tii 0 llsurely sil_,

i

isurely t+ surely sii P2
(d) ¢ % s means that it _p. = lisll_p» for any complete system I Hence, by (15),

i

surely 1l » = [{iel p: 7" is a completion of ./}

1

s p: 7" is a completion of #}

isurely sii P
that is, surely ¢ % surely s. ]

By virtue of Lemma 5.1 (d) , if an occurrence of surely is within the scope of
another one then the former can simply be deleted. Using this rule we can easily

transform any special term to a Boolean combination of descriptors and terms of the
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form surely s, s not containing surely (morover, any reasonable term entering a data
base is, most probabiy, already of this form).

In order to efficiently eliminate surely from the resulting term we shall need another
lemma. First, however, we give some auxiliary definitions. ‘ ‘

A term is said to be in additive normal form (ANF) if it is a sum of primitive terms

of the form Hje.l (ij,Aj), where ip # iq for p » g, and g = Aj # D,-j for all j e J.

Similarly, a term is in multiplicative normal form (MNF) if it is a product of coprimitive

terms of the form 2. jeJ (ij,A j" where, as before, all the attributes ij are different and

none of the descriptors reduces to 0 or 1. Of course, ANF and MNF are special cases of
WANF and WMNF, respectively.

LEMMA 5.2. If s is in MNF then surely s ; .

Proof. Let s be of the form [T, iy, Then

surely s ¢ H,- surely b jlipd J (by Lemma 5.1(c))
¥ H,- -8 2 j (ij,A y i(by definition of surely)
i H,- E-6 H j -(ij,A f (by De Morgan's Law)
= Il =11 jB=Gipd) (by Lemma 5.1(c))

+ I;o- njdj,D,-j\A,-» (by Lemma 4.2(b))

~ 11 i@ 2 j -(i j,D,-j\ A } (by De Morgan’s Law)
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.

I 20pd) (by Lemma 4.2(¢))

%z S (8]
{

Now we are ready to summarize the simplified method of computing the value of an
arbitrary special term . ‘ |
Step 1. Suppress nested occurrences of surely in ¢.
Step 2. Replace every subterm surely s by a term in MNF externally equivalent to
s. (The process of transforming any simple term into MNF by using axioms in B is
quite standard and the details are left to the reader, see also [11]).
Step 3. Transform the resulting term — which does not contain surely — into
WMNF (see the proof of Lemma 4.3).
Step 4. Determine the value of the resulting WMNF term by using Theorem 4.3.
It is not difficult to give a complete set of axioms (involving — unlike TB — only
special terms) for the internal interpretation of special terms.
AXIOMS FOR SPECIAL TERMS UNDER INTERNAL INTERPRETATION. The

set S of axioms consists of:

S1. Substitutions of special terms into the axioms of Boolean algebra and the

axioms
(i) surely (1-s) = surely t+ surely s
(ii) surely surely t = surely t

(iii) surely0 = 0
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(iv) surelyl = |

82. The following axioms concerning descriptors:

v) he) = 0
(vi) (l',Dl') = ]
(vii) (i, liyB) = G AnB forallie I, AB e ﬁ?r

S83. The axiom

(viii) surely Z;’;l (-—(ip,Ap) + 221 (ip,EZ))

koo
= Xy p(D; \ 4y v U2 B

for every positive integer k, every sequence of positive integers ny, .., My, every sequence
of distinct attributes i1s - if and all Ap, B;, veey B;P € ﬁ?v,-p, 1<p<k

The completeness of S can be proved in the same way as the completeness of TB —
- what is essential is that S enables us to transform any special term into WMNF. We
leave it to the reader.

As in the case of general terms, it may sometimes be convenient to use a dual axiom
system, which is based on possibly as a primitive operation. The reader may easily
- verify that such an axiom system S§* can be obtained from S by replacing axioms (i)

through (iv) and (viii) by

(i)* possibly (t + s) = possibly t + possibly s

(ii)* possibly possibly t = possibly



(iii)* possibly 0 = 0

(iv)* possibly 1 = 1

: k. ny .
(viii)* possibly Hp=l ((:P,A’; . Hqgl —(zp,Bg))

k.
= T ~ip(Di \ A U Uz 8.

The above axiom system is especially useful when we transform special terms into
weak additive normal form.

Eexample 5.1. Let us consider the following special term ¢

possibly (DEPT# = 4)«(NAME = BROWN)
+ surely (NAME = LIPSKD-(DEPT# = 1))
«surely ((SAL < 15000)

+ (#CHILDREN > 3)+SAL IN (10000,20000)«STATUS = MARRIED?).

We show below the process of transforming ¢ into WMNF. (We shall strictly follow the
general method of transforming into WMNF described in this section, though in our
particular example there are places where the transformation can be done more

efficiently.)

t ¥ - surely — ((DEPT# = 4«(NAME = BROWN)
+ (NAME = LIPSKD-«(DEPT# = D)
- surely ((¢SAL < 15000) + (#CHILDREN > 3))

«((SAL < 150000 + (SAL IN (10000,20000)))
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*(SAL < 15000) + (STATUS = MARRIED)))

- ((DEPT# = 4) + (NAME = BROWN))

.

*((NAME = LIPSKD) + (DEPT# = 1))
(SAL < 150000 + (#CHILDREN > 3))«SAL < 20000

«((SAL < 15000 + (STATUS = MARRIED))

(-(DEPT# = 4)- ~(NAME = BROWN)

~. 0

+ —(NAME = LIPSKD-—(DEPT# = 1))
((SAL < 15000) + (#CHILDREN > 3))«SAL < 20000)

+(SAL < 15000) + (STATUS = MARRIED))

(-(DEPT# = 4) + -(NAME = LIPSKD))-—(DEPT# IN (2,3,5)

~.Q

+ ~(NAME = LIPSKD+(—(NAME = BROWN) + —(DEPT# = 1))
«((SAL < 15000) + (#CHILDREN > 3)-SAL < 20000

*((SAL < 150000 + (STATUS = MARRIED))

(In the transformation process we assumed that DDEPT# = {1,2,3,4,5}).
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6. COMPUTING THE VALUE OF SPECIAL FORMULAS

In this section we shall develop a method to determine I8l for any special formula
®. It is interesting that this method has a combinatorial flavor and is quite different
from that of computing the value of a special term. The main idea of our method can

be explained on the following simple example.

Example 6.1. Suppose that three objects x,y,z are classified with respect to color.

Assume that the color of no object is known, and consider the following two situations:

I I
possibly green objects 4y = x5} .Bl = {x. )
possibly red objects Ay = {8 By =14
possibly blue objects Ay =[x} By = {x,2}

(we do not exclude the possibility that an object is of another color than those listed
above). We may ask the folloﬁng question: "Is it possible that all colors, i.e. green, red
and blue, are represented in our collection 7" More formally, we ask for the value of the
-formula

Possibly ((green = 0) A (red = 0) A (blue = 0)) - 19

It is easy to see that the answer for our our question is "no" in case I and "yes" in case
IL. Indeed, in case I we have only two objects x,y to represent three colors, and in case
II it may be that x is red, y is green and z is blue. In order to put this observation into

more general terms, we shall need the following definition. A sequence ry, ..., r,, is said
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to be a system of distinct representatives (SDR) of a sequence of sets §y, .., S, if r; € S;
for 1 <i<nandr;= r for 1 < i< j< n Coming back to our example we see that the
releyant difference between case I and II is that there is no SDR for Ay,45,A43, while
there is oné for By,By,B3, namely x.y,z. Tﬁis SDR provides an example of a possible
completion of our information concerning the objecfs which makes formula (19) true.
We may say that in a general situation of this type, involving any number of of sets S1s
-y Sy corresponding to some mutually exclusive properties — call them "colors” — the
element r; of an SDR of §Y, .., S, plays the role of an object which "turns out to be of
ith color."

The classical combinatorial theorem of I';‘h. Hall [4] asserts that an SDR for'Sl, -

S, exists if and only if

IUjeJ Sjl > |J| for every J ¢ {1, .., n}.

This condition is not very interesting from the algorithmic point of view, but efficient
methods of testing for the existence of an SDR do exist. The best known algorithm was
given by Hopcroft and Karp [5], in an equivalent formulation in terms of matchings in
bipartite graphs. It may be useful to describe briefly this alternative formulation of the
problem. Let S1s - S, be subsets of X = %19 0 Xy} We construct a graph G with
vertices corresponding to Sy, .., Sy Xy, ..y X, With an edge {St‘r"j} joining S; and Xp for
all S,-,xj such that xj e S;- By a matching we mean any set of edges with the property
that no two edges in this set are incident to a common vertex. It is clear that iy v P

is an SDR of §j, ..., S, if and only if (51571} s {Sppry) is @ matching in G.



-44 -

(Remark: The algorithm of Hopcroft and Karp constructs an SDR, while we are
merely interested in the existence, it would be interesting to know whether testing for
the existence of an SDR is strictly easier than constructing one.)

Now we shall show how to decompose the problem of computing the value of an
arbitrary special formula into some number of problems of the type described in
Example 6.1. To this end we shall need some definitions and lemmas.

LEMMA 6.1. For any formulas ¢, ¥
(@  Possibly (dv V) > Possibly ® v Possibly ¥,

(b) if & y ¥ then Possibly ® % Possibly .
Proof. Analogous to the proof of Lemma 5.1 (¢), (d). o

We may replace every occurrence of Surely by — Possibly -, and then, by Lemma 6.1
(b), suppress all those occurrences of Possibly, surely, possibly which are within the scope
of Possibly. In this way we obtain a logical combination of special atomic formulas ¢ = s
(ts € 7g), and formulas Possibly &, where & is simple (ie. it does not contain Surely,
Possibly, surely, or possibly). The value of any special atomic formula can easily' be |
computed by the methods developed in the previous section; it is convenient to make use
of the fact

{ T iflit~s+s-th=g
e =sll = .
F otherwise
Determining \Possibly ¥ll, ¥ simple, is related to Example 6.1, and is much more

difficult. We devote the rest of this section to showing how this can be done.



- 45 -
Definition 6.1. (i) A formula is elementary if it is of the form

(=0 A Wiy (1= 0). (20)

where n > 0, fp is in MNF, !{s s tpare in ANF, and 01, = Ofor 0 < p< g < n

ve %

(ii) A formula is in special disjunctive normal form (SDNF) if it is of the form
mieL ¥

where all ¥’ are elementary.

We shall treat formulas (20) lacking the atomic formula fp = 0 also as elementary
— to be more formal, we could add in such 2 case a dummy atomic formula 0 = 0.‘

We shall prove that every simple formula can be transformed into an externally
equivalent formula in SDNF. Let us first notice that for any simple formula & there
exists é finite collection of terms S} =2 Sp (p depends on &) such that s,-osj: Ofor 1<
{ < j < p, and every term occurring in & is externally equivalent to a sum of some
number of terms s;. We shall call such a collection a ser of atoms with respect to ®. One
way to obtain sy, .., Sp is the following. Let J be the set of attributes represented in &.
For any je J, let

}cf}z(@) = {4: (jA occurs in &), 1)

‘6} (®) = the set of all non-empty constituents of Jtl?(‘l’). (22)

(Recall that a constituent of a family {4}y .o Ay} of subsets of a set X is any set of the
form A1 .0 4,7 where €, ., ¢, < (0,1}, and A denotes 4;if ¢; = 1 and X\ 4; if
€; = 0, see Kuratowski and Mostowski {10}, p. 21.) In other words, {a}-(@) is the set of

atoms of the Boolean algebra of subsets of Dj generated by .915-(4'). Now let us define
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o (®) = {Hjej(j,Af: for every je J, Aje fa;-(tb)}.

It is easy to see that .o/ (®) is a set of atoms with respect to &. Sometimes it is
convenient to consider instead of 6}-(’@)' a partition of Dj which is finer than the
partition into non-emepty constituents of .zfj(tb). For instance, for a real-valued attribute
it may be useful to comsider a partition into disjoint intervals, even if not all
constituents are intervals. For simplicity, we shall denote such a finer partition by
6_, (®), too. _

THEOREM 6.1. For every simple formula & there is a formula \Prin SDNF such

that & =~ .
e

Proof. We shall describe an effective procedure of transforming an arbitrary simple

formula ® into SDNF.

Step 1. Replace every atomic formula ¢ = s occurring in by the externally

equivalent formula ro-s + s == 0.

Step 2. By using the propositional calculus axioms transform the resulting

formula into a disjunctive normal form W,- &; where every §; is of the form

Micx- @p=0) A /_*\km (uy, = 0). 23
Now it is sufficient to show how to transform each such conjunction into SDNF.

Step 3. By using the equivalence
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Mrek- wg=0) = Cipeg-up =0,

replace the first part of (23) by the atomic formula fg = 0, where £ is the result of

transforming Zke K- ug into MNF (for transforming into MNF see [11]).

Step 4. Replace the resulting formula, i.e.,

(t9=0) A Mgeg+ (u = 0), (24)

by the (externally equivalent !) formula

(tg = 0) A Mek+ (g =1 = 0)

and ‘then by
(19 = 0) A Mg+ g = 0), (25)

where v is the result of transforming uy --io into ANF.

Step 5. Let © be the second part of (25), i.e.,

Mke[(“ (Vk = 0),

and let J be the set of attributes represented in ©. For every j € J, determine 6‘1-(9)
(see (21), (22)). Since every v is in ANF, it is a sum of primitive terms of the form

I jeP ¢ JoA P P ¢ J. Transform each such primitive term into ]'IJ-E J (j,A), by adding

factors (j,DJa .(: 1) for every j € J\ P. Now replace every factor (j,A} by the
externally equivalent sum
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L G0

(CcAYN(Ce 6(8))

(notice that 4 = U {Ce 15-}(6): Ccd j} and that we have axiom (ii) of group B2), and

then, by using the Distributive Law, transoform the resulting product of sums into a
sum of atoms with respect to ©. By applying the above transformation to every

primitive term in Yi and then suppressing repeated summands, we transform vj into a

sum of distinct atoms with respect to ©, say ZkeMj Sk
Step 6. By using the equivalence

(Zkeuj 90 = Wkeuj (s = 0),

transform (25) into

(h=0) A /X\jem WkeMj (55 = 0).

By applying the (logical) Distributive Law, and then suppressing repeated formulas sz »
0 within every conjunction we ultimately arrive at a disjunction of elementary formulas,

that is, SDNF. (It may then be useful to su;ipress repeated elementary formulas.) o

Example 6.2. Let ® be the formula
(SEX = F) = (AGE > 25)
A [((AGE < 30-SAL > 300000 = 0) A (SEX = M) = 0)
V ((AGE 3 25-SAL < 15000+SEX = F) = 0)

A ((SEX = M)«(SAL > 15000) = 0)] (26)
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Below we show some of the stages of transforming & into SDNF:
® b (SEX = F)(AGE < 25 + (SEX = M)«(AGE > 25) = ()
A ((AGE < 30:SAL > 30000 = 0) A (SEX = M) = 0)
V (SEX = F)«(AGE < 25) + (SEX = M)(AGE > 25) = 0)
A ((AGE > 25)«SAL < 15000)«(SEX = F) = 0)

A ((SEX = M)«(SAL > 15000) = 0)

p ((AGE < 30 + (SEX = M))-((SAL > 30000) + (SEX = M)) = 0)
A (((SEX = .F)-(AGE < 25)¢AGE > 300«SEX = F)
+ (SEX = F)«(AGE < 25)«(SAL < 30000)+(SEX = F)
+ (SEX = M)-(AGE > 25)«(AGE > 30»+SEX = F)
+ (SEX = M)«(AGE > 25)«(SAL < 30000)-(SEX = ) = 0)
V ((SEX = F)«AGE < 25) = 0)
A ((AGE > 25)«SAL < 15000)+(SEX = F) = 0)
A (SEX = M)(SAL > 15000) = 0)
V (SEX = M)«(AGE > 25) = 0)
A ({AGE > 25)«SAL < 15000)SEX = F) » lO)

A ((SEX = M)«(SAL > 150000 = 0)

The first two parts of the above disjunction are already elementary formulas (strictly
speaking, the first one becomes an elementary formula after some simple reductions).

Let © be the third part. We have

faAGE(G) = [(0,25), [25"")}1
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GAL(®) = {10,15000), [15000,)},
SEX(©) = (FLM).

e ((SEX = M)«(AGE > 25)+((SAL < 15000) + (SAL > 15000") = 0)

LX)

A ((AGE > 25)«SAL < 15000SEX = F) = 0)

A (SEX = M)«(SAL > 15000-((AGE < 25) + (AGE > 25) = 0)

After applying Distributive Law and performing some simple reductions, we finally

obtain the SDNF of &:

((AGE < 300 + (SEX = M))-((SAL > 30000 + (SEX = M)) = 0)
A ((SEX = F)«(AGE < 25)+(SAL < 30000) = 0)
v ((SEX = F)«(AGE < 25) = ()
A ((AGE > 25)+(SAL < 15000)(SEX = F) # 0)
A (¢SEX = M)«SAL > 15000) = 0)
v ((SEX = M)-(AGE > 25)+SAL < 15000} = 0)
A ((AGE > 25+(SAL < 15000)-(SEX = F) = 0).

A ((SEX = M)«(SAL > 15000)«(AGE < 23) = 0)

v ((SEX = M)«(AGE > 25)+SAL < 15000) = 0)
A ((AGE > 25-SAL < 15000-SEX = P = 0)
A ((SEX = M)+(SAL > 15000)«AGE > 25 « 0)
v ((SEX = M)»(AGE > 25)+(SAL > 15000) = 0)

A ((AGE > 25«SAL < 15000«SEX = F) = 0)
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A ((SEX = M)«SAL > 15000(AGE < 25) = 0)
V (S8EX = M)«(AGE > 25)«SAL > 15000) = 0)

A ((AGE > 25)«SAL < 15000)«(SEX = F) = 0) (v2))

Notice that in order to be more efficient we did not exactly follow the general pattern
of tlransformation described in the proof of Theorem 6.1.

All we need now is a method for computing the value of Possibly ®, ® elementary.
Indeed, let us transform a simple formula ¥ into an externally equivalent formula in

SDNF, say \W/ JeL ¥ p where the W are elementary. By Lemma 6.1,

Possibly ¥ ¥ Possibly WIeL ¥ ¥ WleL 1 7

The last step is provided by the next theorem.
THEOREM 6.2. Let ¢ be an elementary formula of the form

: n
(=0 A M=y (120 (28)
Then ||Possibly &l =T if and only if the following two conditioins are satisfied:
(i) lisurely ol »= 2,
(ii) the sequence lipossibly 1l A s lIpossibly 1, 2 has an SDR.

Proof. If ||Possibly &) =T then, by (18), there is a completion ./ > ./ sdch
Fhat H@ﬂj{’r = 7-, ie. "!0",/” =g aﬂd “fk“ff = g, 1 _<_ k <n By (15), it follows that
lisurely ioll = 2, and since tpotq = 0 for 1 < p < g n, the sets ity o s gl o
are mutually disjoint, so that we may choose distinct elements x1 € lirgll P s Xy €
eyl s But (16) implies "fk“‘/?f ¢ lipossibly 1l o hence xy, .., X, is an SDR of the

sequence [ipossibly 1l - Npossibly tall o
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Conversely, suppose that llsurely fgll » = ¢ and that xy, .., x, is an SDR of the
sequence lipossibly ¢ IIL/, ey lpossibly t,l Vi Then, by (15) and (16), there exist
completions S, A, -, F such that Mgl g=0 xpelpl gy 1<k<n
Let (Bik)ieb O0< k<n correspond to A, 0 < k< m respectively. We define a

completion ./~ by
B,—k(x) if x=xpforsomek 1<k<n
Bix) =

8 ,-O(x) otherwise

It is easy to see that x; € Izl P 1<k<nand gl =9 (xg ¢ gl e since x; €
Wegll e and 1oty p- 0). Consequently, &}l - =T, i.e. liPossibly ®ii = T. O

Notice that in the proof we did not make use of the fact that 5 was in MNF and
- that the 15, 1 < k < n were in ANF. In fact, these assumptions in the definition of an
elementary formula (see Def. 6.1(i)) were made only to make computing the value
easier — if 0 is in MNF then, by Lemma 5.2,

lisurely tgll = Hegl; 29

similarly, if 7 is in ANF, say Zp Hq (ipq,qu). then
Wpossibly il = l-surely I p Zq (ipq, D,-M\ qu’“
= -1, 2, G Dy, \Apg!

= 12,11, -ty Dy, \Aph Q0

Example 6.3. Consider a very simple system represented by the following table:
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object AGE SAL SEX
x1 (20,40) [0y) {M}
%y (35) [30000,40000) (FM}
X [2030) (10000,20000) i3

We shall compute ||Possibly ®ll, where & is given by (26). First we transform & into
SDNF, which yields formula (27). This formula is a disjunciton of 6 elementary
formulas, | Vv ... V ¢ where &; is of the form (tp=0 A fx\nkél (tix = 0) (rp may
be 0). By using (29), (30) and Theorem 4.3 we obtain

WPossibly &1l = F, since lisurely tjgll = {x{} = #,
WPossibly &41I = F, since no SDR exists for

possibly tyyll = {xg), Npossibly ty9ll = {x4}, lpossibly 1330l = {xq,x9}
WPossibly ®4ll = F, since no SDR exists for

lipossibly t311l = {x1}, Npossibly t3li = {x4}, lpossibly t33 = {x}},
Possibly ®41l = T, since X{s X4, X3 is an SDR for

possibly 1411l = {xy}, lpossibly 1491l = {x4}, Wpossibly t430 = {x,%9}.

Consequently, [|Possibly ®ll = T (we need not consider &5 and &g).

It is easy to see that the length of the SDNF may, in general, grow exponentially

when the length of a formula gets large. Notice, however, that any straightforward

method of evaluating ||Possibly &Il S based on enumerating all completions of ./ would
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be incomparably worse, since the number of such completions is, in general, an
exponential function of the nuber of objects. (Strictly speaking, the number of
completions may be infinite when an attribute domain is infinite. However, we do not
need the exact value of an attribute j in a completion — it is suificient to know the
subset C ¢ fsj(@) to which it belongs.) For obvious reasons, our simple example could
not illustrate the fact that in a real data base the number of objects is usually several
orders of magnitude bigger than the length of a query.

Some ways of improving the efficiency of our method of evaluating |Possibly ®1i are
listed below:

1. In order to transform (25) into SDNF we may repeatedly apply the equivalence

k=0 A =0 = (veyy»0) V (v % 0) A (vge=v; = 0))

and the Distributive Law to formulas (vg = 0), (v = 0) such that wgw; ;; 0. The
resulting SDNF contains, in general, fewer elementary formulas.

In particular, we skip Steps 5 and 6 whenever (25) is already an elementary formula.

2. We need not transform (24) into SDNF if we find that |isurely ol = 2 (the
value of ||Possibly Wi, where ¥ given by (24), is then F). After having generated an
_élementary formula ®; we may evaluate |iPossibly ®l, and if it is 7, we need not
continue the transformation process (the value of the whole formula Poﬁibly d is
then 7).

3. Testing for the existencc of an SDR can be simplified by using the following
simple combinatorial facts:

(a) If S = & for some &, then no SDR exists for Sy, .., S,
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(b) If xe SE\(S{U..US;_1USpeV.US,) then
S1s s Sy has an SDR & 8y, ..., Sg_1 Sgqs ~» Sy has an SDR.
(¢) If |Sg| 2> n then
| Sty s Sy ﬁas an SDR & 8y, .., Sg_1» Sg41s o 5, has an SDR.

(a) corresponds to llpossibly yll » = #, and (b) to surely ¢l p ® B, since lpl; . 0

implies
lipossibly tll \ lpossibly t;l 2 lisurely tyll \ ll=surely=t;l
= ilsurely'tkll N Nsurely-1l = Wsurely tge—1;ll = lsurely 1l = 2.

4. If 15 is O in an elementary formula ¥, and WPossibly ¥Il = T for a subset of our
collection of objects, then liPossibly Wil = T for the whole collection. It is not necessary
so when 1 is not 0 — then the existence of an SDR for llpossibly t{ll, ..., possibly 1\l
is preserved under adding new objects, but the condition Hsurely fyli = 2 may be
violated.

By the last remark, we may infer that the value of Possibly ®, where & given by
(26), is T in any system which — when represented by a table — contains the four
rows from Example 6.3.

Example 6.4. Let & be the formula

((HAIR = FAIR)-possibly SEX = F)) = 6)
A Surely (SAL > 50006)-<TAX < 5000) = O)
The first part of this formula can be transformed into
(HAIR = FAIR»-SEX=M) =0

(the left hand side is in both WANF and WMNF, which enables us to easily compute
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its value in any system). In order to evaluate the second part of our formula we might
exploit the general method based on transforming into SDNF. It is, however, not
necessary in our simple example (neither is it necessary in most of the queries likely to

arise in practice). Instead, we may use the first of the following four equivalencies:

Surely (¢ = 0) = (possibly 1= 0)
Surely (t = 0) ¥ (surely t = 0)
Possibly (t = 0) y (surely t = Q)
Possibly (t = () ¥ (possibly t = 0)

(¢ is an arbitrary special term; the easy proof of these equivalencies is left to the
reader). We have
possibly ((SAL > 50000«(TAX < 5000))
¥ -(SAL < 50000-—TAX > 5000
(see axiom (viii)*), and consequently our formula is transformed into the form
((HAIR = FAIR)~(SEX = M) = ()
A (~=SAL < 50000—(TAX > 5000) = 0)
which easily lends jtself to evaluation in any Asystem.

In the above example we have eliminated Surely from our formula. This is, hov?e_ver,
not always possible. The reason for this impossibility is, very roughly speaking; the fact
that the existence of an SDR is not a "Boolean" property — there may be two
sequences, S, .., S, of subsets of X, and Tys ...y T}y of subsets of Y such that

Sfln...nsf,”=ne=Tfln...nT:"=a |

for all ey, .., €, € {0,1}, yet S1s s S, has an SDR, while Ty, .., T, does not have any
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SDR. This is so, for instance, in the case of the sequences {x,}, {x,} and {x}, {x}. It is
- easy to see that formulas not containing Surely express "Boolean" properties of the
values of special terms. On the other hand, we know (see Theorem 6.2) that there are
special formulas of the form Possibly W which express the existence of an SDR — a
"non-Boolean" property — for the values of some special terms. Of course, no such
formula can be replaced by any (internally) equivalent formula not containing Surely.
For example, let us consider a system with BSEx(x) = [FM} = Dgpx for all x e‘X, and
let & be the formula Possibly (SEX = F) = 0) A (SEX = M) = 0)). Of course, if | X]|
=1 then ||®]l = F, and if | X| = 2 then I$}l = T. However, the value of any formula not
containing Surely is the same in both cases. Indeed, the value of any special term is
either g in both cases or X in both cases, and hence the value of any atomic formula is
the same in both cases.

To conclude this section, let us mention that the values fisurely rll, Wpossibly 1ll,
NSurely ®li, and lIPossibly &Il (for simple ¢ and &) were denoted in [11] by lizlls, N2II®,
i®lle, and lIB1I*, respectively (li-lls and §-§* were called the lower value and the upper
value, respectively). Our algorithm of computing IPossibly ®ll gives a method to
determine (|®/I* (and li®Hs, since li®lls = —~I-~lI*), a problem which was left open in

[11]



.58 -
7. OTHER INTERPRETATIONS OF QUERIES

There us another approach to semantics of queries in an incomplete information
system, based on the theory of pseudo-Boolean algebras (PBAs) and intuitionistic logic.
(The relation of PBAs to intuitionistic logic is exactly the same as the rélation of TBAs
to modal logic 84, see [3,15].) We shall describe only the pseudo-Boolean approach to
interpreting terms (intuitionistic interpretation of formulas is considered in [13]). In the
pseudo-Boolean approach we consider only simble queries, and we treat "-" as a
“strong‘; negation, i.e., -/ is understood, roughly speaking, as the set of objects known
not to have property f, instead of just mot kmown to have property . Also the
intérpretation of "»" is "strong". The formal definition of the "pseudo-Boolean value” of
a simple term ¢ — denote it by | 1], — can be obtained by changing (iii) and (vi) in

Definition 3.1 to

|=t] p ={x e X: for every /" > J,"xctlrlf.}
|+ 5] p={xeX: forevery /" > & x¢|t| o or x¢|s| o

(and deleting (vii)). It can easily be shown that for any simple term ¢

Ifl P Hr()li P4
where 7(¢) is defined inductively by

i) 70) = 0, (l)=1
(ii) 1t + 5) = () + 7(s5)
(iii) 7(1:5) = 7(£)-7(s)
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(iv) (=) = B8-7(1)
) 7t » 5) = B(7(f) » 7(s))

It is also not difficult to prove that

surely = I""l,/
possibly tilf-= X\ |- tlf

Similar relations between |||l and |+| exist for formulas. These relations reflect the fact
that the set of open elements of any TBA (a is open if a = Xd) forms a PBA, and they
are connected with the well known interpretation of intuitionistic logic within the modal
logic 84 (see [15,3]). It may be noted that there exists a similarity between a
"pseudo-Boolean value" and the Kripke models for the intuitionistic logic (Kripke [9],
see also Fitting [3]). It can also be shown that || | p coincides with the interpretation of
terms defined — in a quite different way — by Jaegermana [7].

In the internal interpretation of queries presented in this paper we consider, for any
incomplete system ./ the set of all extensions of .# Since . represents an
incomplete knowledge about a reality described by a completion ©* of .4 not all of
these extensions are really possible. The only compleitons accessible in reality are those
consistent with .7’*, i.e. those of which ./* is a completion. Hence, we may consider a
different approach, where the partiallj ordered set of all extensions of ./ is replaced
by | |

[/, /%] = (S LS L P
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Of course, in general we do not know .7 *. However, there are formulas, such as
eI = 6B, 00® & ood

which are true for any .7” and for any completion S of /£ (The interpretation of a
term and of a formula is now the same as in Definition 3.1, but with "for every /" >
77" replaced by "for every /" € [f /%] ..") These universally valid formulas
define a logic, quite different from the one inherent in our internal interpretation
described in Section 4. Notice that this logic describes the process of increasing the
user’s (system’s) knowledge, as seen by an observer who has complete information about

both the system (f ) and reality (/*).
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8. CONCLUSIONS

Following a treatment of more elementary topics in [11], in the present paper we
gave a thorough treatment of the internal interpretation of queries. It turned out that
this interpretation leads in a natural way to the notion of a topological Boolean algebra
and to a modal logic related to S4. These notions were shown to play the same role for
the internal interpretation as Boolean algebras and classical logié in the case of external
interpretation. We presented a complete axiom system for internally equivalent
trénsformations of terms, and a method to compute the internal interpretation for
arbitrary terms, and for a broad class of formulas including most formulas of practical
interest.

The number of steps performed by our algorithms may, in the worst case, be an
exponential function of the length of the query. However, they seem to be of practical
interest for real world queries that are likely to be submitted to a data base.

There is a number of interesting problems which remain open. One such problem is
to investigate in more detail the logic involved in the internal interpretation of formulas.
More specifically, it is not known to the author whether this logic is decidable (it may
be noted that the results of Section 4 can easily be used to develop a decision procedure
for atomic formulas). Another question is whether there is a simple axiom system for

this logic. Both problems are open even for the sublanguage considered in Section 5.




-62-

ACKNOWLEDGMENTS. I am iidebted to many individuals for their assistance at
various stages of the devclopmen. of this paper. My special thanks are due to W. Marek
and Z. Pawlak who encourag=d me to work on the problem of incomplete inforfna_tjon.
I have benefitted greatly from discussions with M. Jaegermann, J. Loé, C. Rauszer and
K. Segerberg. The suggestions of anonymous referees resulted in a considerable

improvements in the presentation of the results of the paper.



- 63 -

REFERENCES

L.

10.

11.

12.

13.

Codd, E. F. A relational model of large shared data banks. Comm. ACM 13 (1970),
377-387.

. Codd, E. F. | Understanding relations (Installment #7). FDT Bulletin of

ACM-SIGMOD 7, 3-4 (1975), 23-28.

- Fitting, M. C.  Intuitionistic logic, model theory and forcing. North-Holland,

Amsterdam 1969,

. Hall, P. On representatives of subsets. J. London Math. Soc. 10 (1935), 26-30.

. Hoperoft, J. E, and Karp, R. M. An n°/2 algorithm for maximum matchings in

bipartite graphs. SIAM J. Comput. 2 (1973), 225-231.

. Hughes, G. E,, and Cresswell, M. J. An introduction to modal logic. Methuen and

Co., London 1972.

- Jaegermann, M. Information storage and retrieval systems with incomplete

information I. Fundamenta Informaticae 2 (1978), 17-41.

- Kripke, S. A. Semantical analysis of modal logic I. Z, Marh. Logik Grundlagen

Math. 9 (1963), 67-96.

. Kripke, S. A. Semantical analysis of intuitionistic logic. In Formal Sysf'ems and

Recursive Functions, North-Holland, Amsterdam 1965, pp. 92-129.

Kuratowski, K., and Mostowski, A. Ser Theory. Polish Scientific Publishers, Warsaw
1976.

Lipski, W. On semantic issues connected with incomplete information databases.
ACM Trans. Database Syst., to appear.

Lipski, W. On the logic of incomplete information. Proc. 6th Internat. Symp. on
Mathematical Foundations of Computer Science, Tatranska Lomnica, Czechoslovakia,
Sept. 5-9, 1977, T. Gruska, Ed., Springer-Verlag, Berlin 1977, pp. 374-381.

Lipski, W. Informational systems with incomplete information. Proc. 3rd Internat.
Symp. on Automata, Languages and Programming, Edinburgh 1976, S. Michaelson
and R. Milner, Eds., Edinburgh University Press, Edinburgh 1976, pp. 120-130.




-64 -
14. Marek, W., and Pawlak, Z. Information storage and retrieval systems: mathematical

foundations. Theoretical Computer Science 1 (1976), 331-354.

 15. Rasiowa, H., and Sikorski, R. The Mathematics of Metamathematics. Polish
Scientific Publishers, Warsaw 1963. : : :





